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Attention and working memory are clearly intertwined, as 
shown by co-variations in individual ability and the recruit-
ment of similar neural substrates. Both processes fluctuate 
over time1–5, and these fluctuations may be a key determi-
nant of individual variations in ability6,7. If these fluctuations 
are due to the waxing and waning of a common cognitive 
resource, attention and working memory should co-vary on 
a moment-to-moment basis. To test this, we developed a 
hybrid task that interleaved a sustained attention task and 
a whole-report working memory task. Experiment 1 estab-
lished that performance fluctuations on these tasks corre-
lated across and within participants: attention lapses led to 
worse working memory performance. Experiment 2 extended 
this finding using a real-time triggering procedure that moni-
tored attention fluctuations to probe working memory dur-
ing optimal (high-attention) or suboptimal (low-attention) 
moments. In low-attention moments, participants stored 
fewer items in working memory. Experiment 3 ruled out task-
general fluctuations as an explanation for these co-variations 
by showing that the precision of colour memory was unaf-
fected by variations in attention state. In summary, we dem-
onstrate that attention and working memory lapse together, 
providing additional evidence for the tight integration of 
these cognitive processes.

Fluctuations in sustained attention are captured by continuous-
performance tasks1–4. In these tasks, participants repeatedly press 
the same response button in the vast majority of trials. Occasionally, 
participants must inhibit or switch from the prepotent response. 
Errors on these infrequent trials are prevalent and indicate that 
attention has lapsed3,4,8. Performance on sustained attention to 
response tasks (SARTs) has revealed substantial and reliable indi-
vidual differences across the population6,9. Studies have used these 
tasks to track fluctuations in attention through response time 
(RT): when participants responded more quickly than usual, they 
were more likely to respond incorrectly to an infrequent trial3,4. By 
repeatedly sampling the RT in a stream of trials, these tasks tracked 
the intrinsic fluctuations of sustained attention.

A distinct class of tasks has been developed to measure work-
ing memory. In these tasks, participants actively maintain informa-
tion for a brief period of time7. Performance is commonly evaluated 
as working memory capacity (K)—an influential measure that is 
broadly predictive of intelligence and academic achievement10,11. 
More recently, studies have revealed that trial-to-trial performance 
variability can, in fact, explain a large proportion of variance in 
working memory capacity estimates across individuals5. These 
findings suggested that individual differences in working memory 
capacity may actually reflect differences in the frequency with which 
people achieve their maximum capacity. In addition, nearly all  

computational models of working memory improve when a param-
eter accounting for trial-to-trial variability in performance is 
added12,13. Recent studies employed whole-report working memory 
tasks that test memory for each item in a multi-item display to 
resolve trial-by-trial variations in the number of items stored.

Here, we investigated whether fluctuations in sustained attention 
and working memory performance are synchronous. Previous work 
has established that working memory positively correlates with 
attention control14,15 and negatively correlates with mind wander-
ing self-reports16,17. In addition, participants reported more mind 
wandering following low-performance working memory trials18. 
However, there remained an historical gulf between sustained atten-
tion and memory, as these concepts have been studied with different 
tasks (SART versus change detection) and discussed with different 
terminology (vigilance versus capacity). To resolve whether atten-
tion and memory indeed fluctuate synchronously, attention state 
and memory performance needed to be continuously and con-
currently assessed. Rather than addressing individual differences 
across the population, we focused on relating sustained attention 
and working memory differences within individuals across time.

We hypothesized that fluctuations of attention state would predict 
performance fluctuations in working memory. This hypothesis was 
consistent with previous studies that showed a relationship between 
attention and working memory across individuals. Participants with 
lower working memory capacities tended to perform worse at tasks 
that required attention control (for example, antisaccade tasks10,14). 
Across participants, positive latent correlations have been observed 
between working memory and attention factors16,18,19. However, this 
relationship between individuals does not necessarily presuppose 
anything about moment-to-moment fluctuations in attention and 
memory within an individual, as fluctuations of attention could 
reflect some motoric or visual process unrelated to encoding. In 
fact, attention and memory could even be anticorrelated in time, as 
individuals might assign priority to the critical features of one task 
at the expense of the other.

To test whether attention and memory fluctuate synchronously, 
we needed a behavioural task that provided an objective measure 
of both attention and working memory on a moment-to-moment 
basis. We developed a hybrid design that interleaved two established 
tasks: a sustained attention task1,8 and a whole-report working 
memory task5,20 (Fig. 1a). On all trials, participants viewed an array 
of six items—either circles or squares of different colours. The key 
difference between the sustained attention and working memory 
tasks was the relevant feature: shape for the sustained attention task 
and colour for the working memory task. In the sustained attention 
task, participants pressed a different key if the shapes were squares 
or circles. We manipulated the probability of each shape (90% cir-
cles versus 10% squares), which required participants to make the 
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same response repeatedly. In the working memory task, participants 
reported the colour of each item from the most recent array using 
multicoloured squares at each location. These working memory 
probes were rare (5%), and participants did not know whether an 
array would be probed until after it had disappeared.

A key advantage of both tasks is that they provided a rela-
tively continuous assessment of cognitive performance1,5. In the 
sustained attention task, responses were made to the vast major-
ity of trials, including the infrequent category trials. This yielded 
a more complete assessment of behaviour than if participants had 
only responded to infrequent targets. In the whole-report working 
memory task, responses were made for each item on the display. 
This measured trial-by-trial variability in working memory per-
formance, with enhanced resolution compared with traditional 
single-probe change detection tasks where the performance on each 
trial is binary7. That is, both of the tasks we used were well suited 
for tracking moment-to-moment fluctuations in performance 
while preserving the link to the cognitive constructs of interest. 
We hypothesized that performance for the shape-based attention 
task and colour-based working memory task would co-vary across 
and within individuals, reflecting the shared cognitive resources 
between attention and memory.

We first examined whether performance on the hybrid task 
matched characteristic signatures of isolated versions of each task. 

In experiment 1a, participants had lower accuracy for infrequent 
(55% accuracy) than frequent (97% accuracy) trials (Δ = 42%; 
n = 26; one-tailed P < 0.001; Cohen’s d = 2.32; 95% confidence inter-
val (CI) = 35–49%) in the sustained attention task. We evaluated 
overall performance in the sustained attention task using a non-
parametric measure of sensitivity (A′). Overall performance in the 
sustained attention task was well above chance (A′ = 0.87; n = 26; 
one-tailed P < 0.001; d = 15.07; 95% CI = 0.85–0.89). We also cal-
culated sustained attention performance decrements by calculating 
the average infrequent trial accuracy for each block. Indeed, the 
linear slope across the four blocks was reliably negative (b = −3.99; 
n = 26; one-tailed P < 0.001; d = 0.84; 95% CI = −5.87 to −2.28). On 
half of the infrequent trials, a working memory probe appeared and 
participants selected the colour of each item from the most recent 
display. Working memory performance was equal to the number 
of items correct per display (m), which could range from 0 to 6 
(chance = 0.67). On average, participants were well above chance 
(m = 3.09; n = 26; one-tailed P < 0.001; d = 5.50; 95% CI = 2.91–
3.24) in the working memory task. These working memory results 
show—even in this complex hybrid task where colour was most 
often irrelevant—that participants held colour information in mind.

One potential concern is that the shape still provided some infor-
mation, as working memory was probed on 50% of the infrequent tri-
als and 0% of the frequent trials. Indeed, infrequent trials themselves 
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Fig. 1 | Sustained attention relates to working memory performance in an interleaved task. a, Design of the sustained attention and working memory 
task. On each trial, an array of six items (either circles or squares) of different colours was presented. For the sustained attention task, participants 
(n = 50) responded to the shape. To encourage habitual responding, one of the shapes was much more frequent (90% circles versus 10% squares). For 
the working memory task, participants clicked the colour of each item after a 1 s delay. In experiment 1a, memory was probed for the infrequent category 
trials, whereas in experiment 1b, memory was probed for the frequent category trials (as depicted). Participants did not know when working memory 
probes would appear (5% of total trials). b, Sustained attention performance. Accuracy was higher for frequent (96% accuracy) versus infrequent (50% 
accuracy) trials (Δ = 46%; n = 50; one-tailed P < 0.001; d = 2.69; 95% CI = 41–50%). The height of each bar depicts the population average. Error bars 
represent the s.e.m. Each dot depicts the data from each individual in experiments 1a,b. c, Working memory performance. In the whole-report working 
memory task, performance on each trial ranged from 0 (no items correct) to 6 (all items correct). The average number of items correct was above chance 
(m = 2.51; n = 50; one-tailed P < 0.001; d = 2.22; 95% CI = 2.27–2.72). The height of each bar depicts the population average. Error bars represent the s.e.m. 
for each response. Each dot depicts the proportion of that response for each participant in experiments 1a,b. d, Relationship between sustained attention 
and working memory across participants. Sustained attention accuracy in relation to the infrequent trials was positively correlated with average working 
memory performance across all participants (Spearman’s r = 0.56; n = 50; P < 0.001). Each dot depicts the data from one participant in experiment 1a,b.
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could influence subsequent attention21. To better orthogonalize the 
sustained attention and working memory tasks, we modified the 
experimental procedure for experiment 1b and probed memory 
for frequent trials (that is, circles). That way, participants were less 
able to anticipate which trials would be probed, as only 5.6% of fre-
quent trials were followed by probes. In experiment 1b, participants 
still successfully performed both tasks. Overall sustained attention 
performance was well above chance (A′ = 0.81; n = 24; one-tailed 
P < 0.001; d = 8.20; 95% CI = 0.77–0.84), and accuracy was lower 
for infrequent (45% accuracy) versus frequent (94% accuracy) trials 
(Δ = 50%; n = 24; one-tailed P < 0.001; d = 3.31; 95% CI = 43–55%). 
Also, sustained attention performance declined across the four 
blocks (b = −5.12; n = 24; one-tailed P < 0.001; d = 0.83; 95% 
CI = −7.59 to −2.73). Average working memory performance was 
well above chance (m = 1.88; n = 24; one-tailed P < 0.001; d = 1.80; 
95% CI = 1.60–2.13).

There were substantial differences in performance on each task 
across individuals (Fig.  1b,c). We hypothesized that greater per-
formance on one task (for example, fewer attention lapses) would 
correlate with better performance on the other task (for example, 
higher number of items correct for working memory probes). In 
contrast, given the dual-task demands, it was also plausible that 
participants might choose to prioritize one of the tasks, such that 
performance across tasks was anticorrelated. We found that par-
ticipants who had fewer attention lapses in the sustained attention 
task also remembered more items in the working memory task 
(Spearman’s r = 0.56; n = 50; P < 0.001; Fig. 1d). That is, performance 
was positively correlated across tasks, consistent with our hypoth-
esis. We combined all individuals from experiment 1 to maximize 
the sample size for the correlation, but correlations were also reli-
ably positive within each experiment (Spearman’s r1a = 0.52; n = 26; 
P = 0.007; Spearman’s r1b = 0.57; n = 24; P = 0.003). This relationship 
was also observed using another index of sustained attention: RT 
variability. Higher RT variability was anticorrelated with working 
memory performance (Spearman’s r = −0.51; n = 50; P < 0.001; 
Spearman’s r1a = −0.39; n = 26; P = 0.047; Spearman’ r1b = −0.63; 
n = 24; P < 0.001). This relationship between performance on each 
task corroborates previous work showing that overall attention con-
trol correlates with overall working memory capacity10.

A key feature of the hybrid task is that the attention and work-
ing memory tasks are tightly interleaved. This enabled us to explore 
how moment-to-moment fluctuations of performance on the sus-
tained attention task linked with the fluctuations of performance on 
the working memory task. Although high-performing participants 
performed well on both tasks, they could have emphasized colour 
versus shape at different moments, such that attention and memory 
would be anticorrelated in time. However, we hypothesized that 
performance on the two tasks not only co-varied across individu-
als but also co-varied within individuals across time. Accordingly, 
we hypothesized that when attention lapsed in the shape task, par-
ticipants would also remember the colour of fewer items in the 
working memory task. We examined working memory perfor-
mance for probe trials separately based on the attention accuracy 
for that trial. For each participant, we calculated the mean number 
of items remembered following correct attention responses (mcorr) 
and the mean number of items remembered following incorrect 
attention responses (merr). Then, we examined whether the differ-
ence (Δm = mcorr – merr) was reliably above zero across participants. 
In experiment 1a, we observed that working memory performance 
was worse following attention lapses than following non-lapse tri-
als (merr = 2.87; mcorr = 3.21; Δm = 0.35; n = 26; one-tailed P < 0.001; 
d = 1.11; 95% CI = 0.24–0.47; Fig.  2a). In experiment 1b, partici-
pants made fewer errors responding to the probe trials overall, 
as probe trials belonged to the frequent category. However, most 
participants made at least one error responding to a probe trial  
(nerrors = 10.32; n = 22 of 24; 95% CI = 7.05–14.73). We replicated the 
finding from experiment 1a that participants remembered fewer 
items following errors (merr = 1.49; mcorr = 1.82; Δm = 0.33; n = 22; 
one-tailed P = 0.006; d = 0.52; 95% CI = 0.09–0.61; Fig. 2b). These 
results were consistent with the idea that attention and memory 
co-vary across time together. However, this demonstration did not 
necessarily allow us to conclude that attention state directly influ-
ences memory. An alternative explanation could have been that 
error-related processing associated with attention lapses deleteri-
ously impacted working memory performance22,23.

To disentangle attention fluctuations from errors, we turned to 
RTs. Previous studies have shown that faster RTs directly precede 
attention lapses (that is, errors in the infrequent trials)3,4. We calcu-
lated the trailing RT by averaging over the three preceding trials (RT).  
Indeed, in experiment 1a, we observed that trailing RTs were faster 
before an attention lapse versus a non-lapse trial (RTerr = 309 ms; 
RTcorr = 363 ms; ΔRT = 54 ms; n = 26; one-tailed P < 0.001; d = 1.68; 
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Fig. 2 | Fluctuations of attention predict working memory performance 
within participants. a, Experiment 1a: attention lapses influence working 
memory performance. Participants remembered fewer items after an 
incorrect (orange) versus correct response (teal) in the sustained attention 
task (merr = 2.87; mcorr = 3.21; Δm = 0.35; n = 26; one-tailed P < 0.001; d = 1.11; 
95% CI = 0.24–0.47). b, Experiment 1b: attention lapses influence working 
memory performance. Participants remembered fewer items after an 
incorrect (orange) versus correct response (teal) in the sustained attention 
task (merr = 1.49; mcorr = 1.82; Δm = 0.33; n = 22; one-tailed P = 0.006; 
d = 0.52; 95% CI = 0.09–0.61). c, Experiment 1a: attention RTs predict 
attention lapses. Participants made faster responses before an incorrect 
(orange) versus correct response (teal) in the sustained attention task 
(RTerr = 309 ms; RTcorr = 363 ms; ΔRT = 54 ms; n = 26; one-tailed P < 0.001; 
d = 1.68; 95% CI = 42–66 ms). d, Experiment 1b: attention RTs predict 
attention lapses. Participants made faster responses before an incorrect 
response (orange) versus a correct response (teal) in the sustained 
attention task (RTerr = 304 ms; RTcorr = 378 ms; ΔRT = 74 ms; n = 24; one-
tailed P < 0.001; d = 2.02; 95% CI = 60–89 ms). In c and d, the trailing RT 
was calculated by averaging over the three preceding trials (i − 2, i − 1 and i)  
before each infrequent trial (i + 1). The height of each bar reflects the 
population average, and error bars represent the s.e.m. Data from each 
participant are represented as grey dots.
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95% CI = 42–66 ms; Fig.  2c). We further replicated this pattern 
in experiment 1b (RTerr = 304 ms; RTcorr = 378 ms; ΔRT = 74 ms; 
n = 24; one-tailed P < 0.001; d = 2.02; 95% CI = 60–89 ms; Fig. 2d). 
Moreover, when trailing RTs were sorted and binned within par-
ticipants, the probability of an attention lapse decreased as the RT 
increased. This was quantified by a positive linear slope across bins 
in experiment 1a (b = 4.36; n = 26; one-tailed P < 0.001; d = 1.99; 
95% CI = 3.49–5.15) and experiment 1b (b = 5.05; n = 24; one-tailed 
P < 0.001; d = 2.40; 95% CI = 4.16–5.81). These analyses suggested 
that the RT may serve as an index of attention state, to continuously 
track attention fluctuations irrespective of errors in the sustained 
attention task.

Although faster RTs preceded attention lapses, and attention 
lapses correlated with worse working memory performance, decou-
pling RTs from errors still represented a challenge. For each partici-
pant, we computed the Spearman’s rank correlation (r) between RTs 
and working memory performance for correct trials, then examined 
whether these correlations were reliably positive across participants. 
In experiment 1a, RTs did not reliably correlate with working mem-
ory performance (r = 0.012; n = 26; one-tailed P = 0.30; d = 0.10; 
95% CI = −0.033–0.055). In experiment 1b, this relationship 
between trial-by-trial RT and working memory performance was 
negligible but reliably positive (r = 0.033; n = 24; P = 0.021; d = 0.42; 
95% CI = 0.001–0.066). We opted to modify the task to incorporate 
recent advances in real-time triggering methods, which enable the 
specific targeting of a predefined cognitive or neural state4. These 
techniques use the cognitive state of interest (for example, attention) 
as the dependent measure to sample rare—but potentially influen-
tial—moments. By continuously monitoring attention fluctuations 
online via the RT, we could trigger an experimental event (for 
example, the appearance of a working memory probe) at desirable 
moments. That is, we could probe memory when we detected that 
the attention state was exceptionally high or low. Triggering working 
memory probes could potentially increase the power for evaluating 
the consequences of an extremely low attention state while avoid-
ing an undue influence of errors (and error-related processing) 
on memory. Notably, the real-time triggering procedure was not 
designed to maximize working memory performance, but rather to 
focus on the predictive role of the RT while specifically controlling 
for other potential explanatory variables (for example, errors).

In experiment 2, we adopted a real-time triggering procedure to 
more directly link fluctuations of attention and memory (Fig. 3a). We 
inserted memory probes contingent on attention state (operational-
ized as moment-to-moment fluctuations of RT). Given the findings 
from experiments 1a and 1b, we hypothesized that faster responses 
would index low attention states and therefore predict worse work-
ing memory performance. For each participant, we individually tai-
lored and dynamically updated what was considered fast (or slow), 
based on their cumulative mean RT (µ) and standard deviation (σ). 
In addition, we calculated a trailing window average of RTs over 
the three most recent trials (RT). The moment that this measure 
exceeded certain predetermined thresholds, we inserted a memory 
probe for the current trial (i). That is, if participants were respond-
ing especially fast, μ< −σ(RT ) or especially slow μ> + σ(RT ), we 
triggered a memory probe. We have illustrated this procedure using 
a small selection of trials from a representative participant (Fig. 3b). 
We hypothesized that memory performance would be worse follow-
ing probes triggered due to fast (versus slow) RTs.

As an initial validation of this procedure, we wanted to ensure 
that we successfully targeted low (fast) or high (slow) atten-
tive moments. In experiment 2a, we identified the fast memory 
probes and slow memory probes. The number of probes did not 
reliably differ between fast versus slow conditions (Nfast = 69.42; 
Nslow = 69.04; Δ = 0.38; n = 26; two-tailed P = 0.52; d = 0.13; 95% 
CI = −0.77–1.46). Next, to evaluate whether the procedure was 
successful at identifying meaningful variation in RT, we examined 

the RTs that triggered a fast memory probe or slow memory probe. 
As expected, the RTs before fast versus slow memory probes were 
reliably different (RTfast = 220 ms; RTslow = 552 ms; ΔRT = 333 ms; 
n = 26; one-tailed P < 0.001; d = 3.85; 95% CI = 301–365 ms). This 
analysis validated that real-time triggering was successful at identi-
fying significant deviations in response behaviour.

The critical question was whether this putative attention index, 
RT, predicted moment-to-moment working memory performance. 
We hypothesized that memory performance would be worse for fast 
memory probes, which appeared when participants were respond-
ing more quickly and attention was worse. Indeed, the number of 
items remembered was lower for fast memory probes versus slow 
memory probes, and the difference between these conditions was 
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Fig. 3 | Real-time triggering of working memory probes. a, Real-time 
triggering procedure in experiment 2. For each trial, the attention state 
was computed using a trailing window of recent RTs (RT) over the three 
preceding trials for each participant (n2a = 26; n2b = 23). Thresholds were 
individually tailored and dynamically updated, using the cumulative 
mean (μ) and s.d. (σ) over all preceding trials (1, 2, …, i). If the trailing 
RT (RT) was faster than the fast threshold (μ − σ, orange) or slower 
than the slow threshold (μ + σ, teal), a memory probe appeared. For 
experiment 2b, participants had to respond accurately for all preceding 
trials, as well as the to-be-probed trial (correct RT). Otherwise, the trial 
procedure continued without a memory probe. b, Real-time data on a 
small selection of trials from a representative participant in experiment 
2b. The trailing RT (RT, black line) indicates the average RT of the three 
preceding trials. The orange dashed line shows the fast threshold (μ − σ), 
and the teal dashed line shows the slow threshold (μ + σ). At each trial, if 
RT exceeded either threshold, memory was probed. Dots correspond to 
memory probes (fast, orange; slow, teal). c, In experiment 2a, participants 
correctly remembered fewer items after fast (orange) versus slow (teal) 
memory probes (mfast = 2.12; mslow = 2.23; Δm = 0.11; n = 26; one-tailed 
P = 0.007; d = 0.49; 95% CI = 0.02–0.19). d, In experiment 2b, participants 
correctly remembered fewer items after fast (orange) versus slow (teal) 
memory probes (mfast = 2.10; mslow = 2.26; Δm = 0.17; n = 23; one-tailed 
P < 0.001; d = 0.71; 95% CI = 0.09–0.28). The height of each bar depicts 
the population average. Error bars represent the within-subject s.e.m. Data 
from each participant are overlaid as small grey dots, and data from the 
same participant are connected with lines.

NATuRE HuMAN BEHAViouR | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


LettersNATurE HumAN BEHAvIour

reliable (mfast = 2.12; mslow = 2.23; Δm = 0.11; n = 26; one-tailed 
P = 0.007; d = 0.49; 95% CI = 0.02–0.19; Fig.  3c). Thus, this real-
time triggering procedure established a direct relationship between 
attention fluctuations and working memory performance. Our 
triggering design shows that it is possible to predict and influence 
working memory performance, by carefully selecting the moments 
when memory is tested.

Although the real-time triggering design was intended to iso-
late the effect of RT on memory, there are other factors that could 
have had potentially confounding influences. For example, RTs 
might have been slower because of an infrequent trial that appeared 
in the trailing window. Indeed, there were more infrequent trials 
that appeared before slow versus fast memory probes (Nslow = 27.00, 
Nfast = 13.81; Δ = 13.19; n = 26; two-tailed P < 0.001; d = 1.18; 95% 
CI = 9.12–17.50). In addition, faster RTs could still have led to 
errors, which then influenced memory. To test whether these fac-
tors accounted for the working memory performance difference, we 
removed the memory probes with errors and infrequent trials and 
conducted a post-hoc analysis. The effect of RTs on memory was 
still observed (mfast = 2.15; mslow = 2.25; Δm = 0.10; n = 26; one-tailed 
P = 0.04; d = 0.35; 95% CI = −0.02–0.19).

However, a key advantage of the real-time triggering procedure 
is that its predictions are prospective and do not rely on post-hoc 
analyses. Therefore, in experiment 2b, we made specific improve-
ments to the real-time triggering procedure to more concretely 
demonstrate that the current attention state predicted future work-
ing memory performance. The triggering of a memory probe was 
based entirely on anticipatory pre-probe RTs. In experiment 2a, the 
trailing responses (RTi−2, RTi−1 and RTi) that triggered the probe 
included the to-be-probed array (i). In experiment 2b, we calcu-
lated RT in the same manner, but then used this attention index 
to probe memory for the subsequent trial (i + 1). This modification 
was intended to eliminate trial-specific encoding signatures of RT. 
In addition, in experiment 2b, we skipped the triggered memory 
probe if participants made an error in the sustained attention task. 
Participants had to make correct responses to all pre-probe trials 
(i − 2, i − 1 and i) as well as the to-be-probed array (i + 1), which 
were not requirements for experiment 2a. These modifications to 
the real-time triggering procedure were intended to further rule out 
the possibility that basic task compliance could explain the co-vari-
ation between attention and memory. We also required all frequent 
trials in the trailing window so any response-switching demands 
would not influence the RT. Experiment 2b was intended to provide 
additional corroboration of the results while more directly targeting 
an anticipatory, error-free attention state.

In experiment 2b, we were still successful at triggering fast 
and slow memory probes. Although the overall number of work-
ing memory probes decreased, there was no reliable difference 
(Nfast = 55.74; Nslow = 53.26; Δ = 2.48; n = 23; two-tailed P = 0.38; 
d = 0.18; 95% CI = −2.96–8.09). Next, we calculated the trailing 
average RT (RT) for probes triggered due to faster responding or 
slower responding. As expected based on the triggering procedure, 
we were successful at capturing a large difference in trailing average  
RTs (RTfast = 235 ms; RTslow = 519 ms; ΔRT = 284 ms; n = 23; two-
tailed P < 0.001; d = 5.51; 95% CI = 265–306 ms). This analysis 
validated that the new triggering procedure was still successful at 
identifying significant deviations in responses.

The critical question was whether this attention index, RT, 
predicted upcoming working memory performance. Indeed, par-
ticipants remembered fewer items for fast memory probes versus 
slow memory probes (mfast = 2.10; mslow = 2.26; Δm = 0.17; n = 23; 
one-tailed P < 0.001; d = 0.71; 95% CI = 0.09–0.28; Fig.  3d). This 
real-time triggering procedure in experiment 2b replicated and 
extended our understanding of the relationship between atten-
tion fluctuations and memory performance from experiment 2a, 
while controlling for other factors that influence performance. 

Measurements of the sustained attention state, taken from before 
the encoding display appeared, were able to predict future working 
memory performance.

We were interested in whether high- or low-performing indi-
viduals in experiment 2 were especially susceptible to the trigger-
ing manipulation. We used an independent single-probe change 
detection task at the end of the session to calculate working mem-
ory capacity (K). Average capacity estimates (K = 2.38; n = 45; 95% 
CI = 2.04–2.69) were consistent with previous studies5. As expected, 
capacity was indeed correlated with performance in the whole-
report task (Spearman’s r = 0.38; n = 45; P = 0.01). However, we 
observed no relationship between capacity and performance differ-
ence in response to slow versus fast memory probes (Spearman’s 
r = 0.10; n = 45; P = 0.50). This shows that there is a possible advan-
tage of customizing the triggering manipulation to individuals. 
Everyone suffers from occasional moments of inattention—even the 
highest-performing individuals. This real-time procedure exploited 
those inopportune moments whenever they occurred.

One potential explanation is that attention fluctuations were suc-
cessful at predicting working memory performance because both 
rely on a general signature that is important but not specific to these 
cognitive processes (for example, alertness or task engagement). If 
so, attention fluctuations would predict most, if not all, measures 
of performance in this dual-task scenario. Alternatively, attention 
and memory performance might co-vary only when specific cogni-
tive operations are taxed in both tasks. To test this possibility, we 
designed experiment 3 to closely match experiment 2b. Memory 
probes were again triggered based on attention fluctuations. The 
critical modification was that we measured the precision rather 
than the number of colours maintained on each trial (Fig. 4a). All 
items in a given display were the same colour drawn from a con-
tinuous colour space, and participants responded by clicking along 
a colour wheel24. An advantage of these continuous report tasks is 
that small but reliable differences in mouse position were detect-
able. Previous work has suggested that number and precision reflect 
distinct aspects of memory ability, which could be attributed to 
the many differences in memory demands between the two tasks. 
The number of items is specifically linked to attention control11. 
Therefore, we anticipated that the moment-to-moment variations 
in attention would no longer co-vary with continuous colour mem-
ory in experiment 3. Alternatively, if attention fluctuations reflected 
a more task-general signature, fluctuations of attention would also 
co-vary with memory performance.

In experiment 3a, we were first interested in how participants 
performed this modified hybrid task. Overall performance in the 
sustained attention task (A′ = 0.85; n = 22; one-tailed P < 0.001; 
d = 8.95; 95% CI = 0.83–0.87) was above chance, as in the previous 
experiments. Performance on the continuous colour memory task 
was quantified as the absolute response error (err). Participants accu-
rately performed the continuous colour memory task (err = 17.70°; 
95% CI = 15.59–20.23°), although the hybrid task demands may 
have contributed to worse performance than in previous demonstra-
tions of continuous colour memory24. The distribution of response 
errors (Fig. 4b) was further characterized as a mixture of a uniform 
distribution (g = 7.13%; 95% CI = 5.30–9.44%) and a circular nor-
mal distribution (s.d. = 17.02°; 95% CI = 15.64–18.44°). Across indi-
viduals, we did not observe a correlation between attention lapses 
and average absolute response error (Spearman’s rerr = −0.01; n = 22; 
P = 0.95), guessing (Spearman’s rg = −0.10; n = 22; P = 0.66) or pre-
cision (Spearman’s rs.d. = 0.08; n = 22; P = 0.71). As in experiments 1 
and 2, we captured RT fluctuations (RTfast = 209 ms; RTslow = 468 ms; 
ΔRT = 259 ms; n = 22; one-tailed P < 0.001; d = 3.67; 95% CI = 231–
288 ms). The critical question was whether better attention (slower 
RT) predicted better memory (lower absolute response error). 
There was no reliable co-variation with memory in terms of abso-
lute response error (errfast = 17.34°; errslow = 18.18°; Δerr = 0.84; 
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n = 22; one-tailed P = 0.82; Bayes factor for the null hypothesis (BF0) 
= 7.78; d = −0.19; 95% CI = −0.96–2.67°; Fig. 4c). In addition, fast 
memory probes were not less likely to be remembered (gfast = 7.07%; 
gslow = 7.34%; Δg = 0.27%; n = 22; one-tailed P = 0.60; BF0 = 5.33; 
d = −0.05; 95% CI = −1.98–2.34%), nor were they remembered less 
precisely (s.d.fast = 16.98°; s.d.slow = 17.56°; Δs.d. = 0.58°; n = 22; one-
tailed P = 0.93; BF0 = 9.96; d = −0.31; 95% CI = −0.20–1.32°).

One possible concern is that this result was due to inadequate task 
difficulty, perhaps because lingering sensory memory traces could 
have supported working memory behaviour. In experiment 3b, we 
therefore reduced the exposure duration and inserted a blank inter-
stimulus interval between every trial. Performance on this task was 
again quantified as average absolute response error (err = 24.70°; 
20.68–30.46°), guessing (g = 17.92%; 13.19–24.50%) and precision 
(s.d. = 15.46°; 14.27–17.31°). Consistent with the hypothesis that 
these changes would make the task more difficult, performance was 
worse in experiment 3b than experiment 3a in terms of response 
error (Δerr = 7.00°; n3a = 22; n3b = 24; one-tailed P = 0.003; d = 0.72; 
95% CI = 2.28–13.08) and guessing (Δg = 10.80°; n3a = 22; n3b = 24; 
one-tailed P < 0.001; d = 1.00; 95% CI = 5.67–17.69), but not preci-
sion (Δs.d. = −1.56°; n3a = 22; n3b = 24; one-tailed P = 0.93; d = −0.43; 

95% CI = −3.46–0.68). Higher accuracy in infrequent trials was 
anticorrelated with absolute response error across participants 
(Spearman’s r = −0.58; n = 24; P = 0.003), unlike what we observed 
in experiment 3a. However, the critical question was whether atten-
tion and memory co-varied across time within participants. There 
was no reliable memory difference between fast- and slow-triggered 
memory probes for response error (errfast = 24.57°; errslow = 25.19°; 
Δerr = 0.63°; n = 24; one-tailed P = 0.66; BF0 = 6.21; d = −0.09; 95% 
CI = −1.82–3.93°; Fig.  4d), guessing (gfast = 17.43%; gslow = 17.71%; 
Δg = 0.28°; n = 24; one-tailed P = 0.55; BF0 = 5.16; d = −0.03; 95% 
CI = −3.28–4.50%) or precision (s.d.fast = 15.85°; s.d.slow = 16.79°; 
Δs.d. = 0.94°; n = 24; one-tailed P = 0.78; BF0 = 7.57; d = −0.16; 95% 
CI = −0.89–4.24°). The moment-to-moment co-variation between 
sustained attention and working memory is therefore not pres-
ent in all tasks, as it would be if attention fluctuations reflected a 
completely task-general state. Rather, attention and memory co-
variations are contingent on the manner in which working memory 
performance is assessed.

Another way in which we characterized the relationship between 
the sustained attention and continuous colour memory tasks was 
through the cognitive impact of the dual tasks. In experiment 3c, 
participants completed only the continuous report colour memory 
task without a concurrent sustained attention task. We hypothesized 
that the dual-task demand of the interleaved sustained attention 
task deleteriously influenced performance on the colour precision 
memory task. In contrast, if memory performance was insensitive 
to the presence of the sustained attention task (perhaps due to inad-
equate task difficulty), eliminating the dual task would not influ-
ence working memory performance. However, consistent with our 
hypothesis, performance was much better in experiment 3c in terms 
of the absolute response error (err = 9.78°; 9.02–10.80°), guessing 
(g = 1.39%; 1.09–1.96%) and precision (s.d. = 11.76°; 11.04–12.84°). 
Performance was worse in experiment 3a than experiment 3c in 
terms of response error (Δerr = 7.92°; n3a = 22; n3c = 23; one-tailed 
P < 0.001; d = 1.89; 95% CI = 5.60–10.55), guessing (Δg = 5.74%; 
n3a = 22; n3c = 23; one-tailed P < 0.001; d = 1.62; 95% CI = 3.82–7.90) 
and precision (Δs.d. = 5.26°; n3a = 22; n3c = 23; one-tailed P < 0.001; 
d = 1.82; 95% CI = 3.76–7.02). These findings show that the lack of 
co-variation between tasks was not a consequence of a continuous 
colour memory task that was insensitive to the presence of the sus-
tained attention task.

Taken together, the results of our three experiments show that 
attention and memory fluctuate together over time. In experiment 1,  
we discovered that attention and working memory were related 
across participants and within participants across time. Experiment 2  
more directly linked moment-to-moment fluctuations in atten-
tion state with fluctuations in working memory performance using 
a real-time triggering approach that we developed. By triggering 
memory probes in real time, we exploited potentially impactful 
fluctuations of attention state, and decoupled attention fluctuations 
from other explanatory variables. Experiment 3 was designed to 
test whether RT reflected a more task-general signal, by examin-
ing whether attention fluctuations co-varied with the precision of 
a single representation in working memory. The same real-time 
triggering design yielded no co-variation between attention and 
memory precision fluctuations. In summary, these results support 
the hypothesis that sustained attention and working memory draw 
on a common cognitive resource that waxes and wanes.

This online and adaptive triggering design was inspired by 
behavioural studies that linked attention to long-term recognition 
memory4, as well as real-time neuroimaging studies3. One advan-
tage of the real-time triggering procedure is that it can prospectively 
decouple other potential explanatory variables via behaviour. That 
memory fluctuated even when participants were performing the 
task correctly is consistent with our previous work, in which we 
found no difference between early visual responses for trials with 
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Fig. 4 | Sustained attention and colour memory precision in a continuous 
report task. a, In experiment 3, participants completed a colour memory 
precision task. In experiment 3a,b, this colour memory precision was 
interleaved with a sustained attention task, and the memory probe 
locations were determined online using a real-time triggering procedure, 
as in experiment 2b. Each trial was an array of six items (either circles or 
squares) of the same colour, drawn from a continuous colour space. For 
working memory probes, participants (n3a = 22; n3b = 24; n3c = 23) selected 
a colour from a continuous colour wheel. b, Distribution of response errors 
in experiment 3a. The height of each bar in the histogram reflects the mean 
of the bin across participants (bin width = 20°; n = 22). Error bars represent 
the s.e.m. c, In experiment 3a, absolute response error did not reliably 
differ for fast (orange) versus slow (teal) memory probes (errfast = 17.34°; 
errslow = 18.18°; Δerr = 0.84°; n = 22; one-tailed P = 0.82; BF0 = 7.78; 
d = −0.19; 95% CI = −0.96–2.67°). d, In experiment 3b, absolute response 
error did not reliably differ for fast (orange) versus slow (teal) memory 
probes (errfast = 24.57°; errslow = 25.19°; Δerr = 0.63°; n = 24; one-tailed 
P = 0.66; BF0 = 6.21; d = −0.09; 95% CI = −1.82–3.93°). The height of each 
bar depicts the population average, and error bars represent the within-
subject s.e.m. Data from each participant are overlaid as small grey dots, 
and data from the same participant are connected with lines.
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low and high working memory performance5. Importantly, we do 
not mean to suggest that basic task compliance does not influence 
performance—just that this factor was not key to the observed co-
variation between attention and working memory. We propose 
that the number of items held in working memory depends on a 
cognitive resource that is also important for over-riding prepotent 
responses in the sustained attention task10.

These findings complement previous neural evidence linking 
attention state to working memory encoding. For example, neural 
responses to cues25,26, as well as pre-stimulus oscillatory activity5,27,  
are related to working memory performance. Our findings suggest 
that prestimulus attention fluctuations might be detectable long 
before a cue or a memory encoding array. Although RT was success-
ful at highlighting good and poor moments, RT by itself is not a per-
fect measure of attention state. Neural signatures tracking sustained 
attention fluctuations (for example, multivariate classification3 or 
pupillometry28) might also similarly or independently co-vary with 
memory. By combining behavioural and neural indices of attention 
fluctuations, it might be possible to influence memory performance 
to a greater extent. Future work could incorporate such neural 
measures of attention fluctuations to further characterize the links 
between attention and memory.

Finally, these results provide additional motivation to explore 
real-time manipulations of attention and memory performance. 
Here, we have demonstrated through online and adaptive triggers 
that an entirely anticipatory behavioural measure of attention pre-
dicts upcoming working memory. These findings suggest plausible 
means of enhancing memory performance; for example, by timing 
memory tests to occur exclusively during optimal times. In addi-
tion, triggering approaches could answer neuroscientific ques-
tions about the relationship, and potentially decouple other neural 
and behavioural signals of attention and memory fluctuations (for 
example, RT variability). The ability to track and predict attention 
and working memory could be enormously beneficial, especially 
in situations where lapses are catastrophic. For example, attention 
could be continuously monitored in educational settings (for exam-
ple, during a long lecture) or occupational settings (for example, in 
air traffic control), to select the best moments for memory.

Methods
Participants. A total of 177 people participated across 7 studies for course 
credit from the University of Chicago or US$20 payment (112 female; 
mean = 22.1 years). The target sample size a priori was set to approximately 24 
for each study, based on previous studies of sustained attention4. Because we 
developed the task specifically to test this hypothesis, no statistical methods 
were used to predetermine sample sizes before data collection. One participant 
left the study early without completing it. Eight participants were excluded as 
their performance in either task exceeded three standard deviations from the 
population mean in that study. After exclusion, the final sample sizes for each 
study were: n = 26 of 28 for experiment 1a, n = 24 of 24 for experiment 1b, 
n = 26 of 28 for experiment 2a, n = 23 of 24 for experiment 2b, n = 22 of 24 for 
experiment 3a, n = 24 of 24 for experiment 3b and n = 23 of 24 for experiment 3c. 
Participants were allocated to experiments based on when they signed up for the 
study. We largely conducted within-participant comparisons; therefore, there was 
no group assignment within experiments. Repeat participation was not prevented, 
and 17 individuals participated multiple times in experiments 1–3. The individuals 
who participated in experiments 1a,b were completely non-overlapping. All 
participants in these experiments reported normal or corrected-to-normal colour 
vision, and provided informed consent to a protocol approved by the University of 
Chicago Social and Behavioral Sciences Institutional Review Board.

Apparatus. Participants were seated approximately 88 cm from an LCD monitor 
(refresh rate = 120 Hz). Stimuli were presented using Python and PsychoPy29.

Stimuli. Stimuli were shapes—either circles (diameter = 1.5°) or squares 
(1.5° × 1.5°). Each display comprised 6 shapes at 4° eccentricity (Fig. 1). The shape 
positions were consistent for all trials to minimize intertrial visual transients2.

For experiments 1 and 2, each shape was one of nine distinct colours (red, 
blue, green, yellow, magenta, cyan, white, black or orange) and each display 
contained six shapes of unique colours. A central black fixation dot (0.1°) 
appeared at the centre and turned white after a key press. For whole-report 

working memory probes, a multicoloured square (1.5° × 1.5°) comprising the 9 
colours appeared at each of the 6 locations, and the mouse cursor appeared at the 
central fixation position.

For experiment 3, the colour of each shape was drawn from a set of 512 colours 
taken from an International Commission on Illumination L*a*b* space (centred 
at L* = 70, a* = 20 and b* = 38), and all shapes were the same colour for each 
display. Each successive display was separated by at least 20°, but the colours were 
otherwise randomly chosen. For continuous-report working memory probes,  
a colour wheel (radius 4°) appeared (Fig. 4a), and the mouse cursor appeared at  
the central fixation position.

Procedure. In the sustained attention task, participants viewed a continuous 
stream of displays, each of which was an array of squares or circles. Their task 
was to press keys based on the shapes of the array. If the shapes were squares, 
they pressed the ‘s’ key, and if the shapes were circles, they pressed the ‘d’ key. 
The imbalanced distributions of the shapes across displays were selected from 
previous SARTs: 90% of the displays were circles and 10% of the displays were 
squares. The stimuli remained on the screen for 800 ms with no interstimulus 
interval in all experiments except experiment 3b. In experiment 3b, the exposure 
duration was shortened (500 ms) and a blank interstimulus interval (300 ms) 
was introduced between every stimulus. Participants could respond any time 
before the next stimulus appeared (within 800 ms). Because of the long stimulus 
exposure durations, it was unlikely that the encoding time seriously constrained 
performance in the task30.

In the working memory task, participants were occasionally probed on the 
colour of all of the items from the most recent display. The length of the retention 
interval (1 s) eliminated the ability for sensory memory alone to support behaviour. 
In all experiments, participants used the mouse cursor to select their response. For 
experiments 1 and 2, participants completed a discrete colour whole-report working 
memory task. Multicoloured squares that included all nine possible colours appeared 
at each location. Participants had to select a colour for each item from the previous 
display before the screen would advance. After making a response, a large black 
square appeared around the outside of the entire multicoloured square for that item. 
Participants had to respond to each of the six items. After the last response, the screen 
went blank again (1 s) before resuming the sustained attention task. For experiment 
3, a continuous colour wheel appeared on the screen to probe the precise colour 
maintained in working memory. After the participants selected a colour along the 
wheel, the screen went blank again (1 s) before resuming the sustained attention task. 
The category of the trials selected for memory probes differed across experiments—
either the infrequent trials (experiment 1a), the frequent trials (experiment 1b) or 
both (experiments 2 and 3a,b). In experiment 3c, there was no interleaved sustained 
attention task, and participants only performed the continuous colour report for 
the working memory probes.

Participants practised the sustained attention and working memory tasks 
separately, and then both tasks together, before starting the study. Participants 
completed multiple blocks with 800 sustained attention trials per block. In most 
experiments, participants completed four blocks, except in experiment 3b, which 
had six blocks. The first participant from experiment 1a started but did not 
complete a fifth block, but only data from the first four blocks were analysed. Each 
block contained up to 40 working memory probes.

Real-time triggering procedure. In experiments 2a,b and 3a,b, the working 
memory probes were triggered on the basis of the attention state, operationalized 
as the speed of responding (Fig. 3). Participants were not informed that their RTs 
controlled when memory probes would appear.

In experiment 2a, the cumulative mean (μ) and standard deviation (σ) of 
the RT was calculated for all trials up to that point (1… i). In addition, RT was 
calculated over the three most recent trials (i − 2, i − 1 and i). A fast memory probe 
would be triggered when RT was faster than the fast threshold: RT < (μ − σ). A slow 
memory probe would be triggered when RT was slower than the slow threshold: 
RT > (μ + σ). Memory probes were separated by a minimum distance of three trials.

In experiments 2b and 3a,b, we sought to isolate more anticipatory attention 
fluctuations, so RT was used to trigger the memory probe for the subsequent 
trial (i + 1). That is, the decision on whether a memory probe appeared was 
unrelated to the RT for that trial (RTi+1). We also required that all three 
preceding trials (i − 2, i − 1 and i) were of the frequent category, and that a 
correct response was made for each of them. Furthermore, to rule out the role of 
errors, we required that participants respond correctly to the probe trial (i + 1). 
Up to 36 memory probes were inserted on the fly according to fluctuations in 
response behaviour, split evenly for fast versus slow responding (18 fast and 18 
slow). The first 80 trials of a block were used to initalize the estimates of the 
cumulative mean RT (μ) and standard deviation of RTs (σ) necessary for the 
real-time triggering procedure. During those trials, we randomly placed four 
memory probes independent of RT.

Change detection task. After completing the hybrid task, participants in 
experiments 1a,b, 2a,b and 3a completed 96 trials of a single-probe discrete colour 
change detection task. We analysed the data from all participants who completed 
the change detection task (experiment 1a: n = 16 of 26; experiment 1b: n = 22 of 23; 
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experiment 2a: n = 24 of 26; experiment 2b: n = 23 of 23; experiment 3a: n = 24 of 24).  
Some participants did not complete the change detection task (for example, if 
there was insufficient time) and were therefore not included in this analysis. For 
each trial, participants viewed an array of 6 coloured squares (1.5° × 1.5°), which 
appeared anywhere on the screen between 1° and 4° eccentricity, with a minimum 
distance of 2° between the centroids of the squares. The squares appeared for 
500 ms, followed by a 1 s retention interval. Then, one square from the array 
reappeared as a probe. Participants made an unspeeded response by pressing the 
‘/’ key if the colour was the same or the ‘z’ key if the colour was different. There 
was an equal probability that the probed square was the same or a different colour. 
Participants completed 1 block of 96 trials, and working memory capacity was 
calculated using an established formula for these tasks31: K = N × (H − FA), where 
N represents the set size, H is the hit rate (probability of correctly identifying a 
trial where the probe changed colour) and FA is the false alarm rate (probability 
of incorrectly identifying a trial where the probe did not change colour). In 
experiment 2, we analysed between-participant correlations with change 
detection performance. For these analyses, we excluded the two participants from 
experiment 2a who did not complete the single-probe change detection task and 
two participants in experiment 2b who had also participated in experiment 2a.

Sustained attention data analysis. Sustained attention performance on each 
trial was characterized using accuracy (that is, whether the participant made the 
correct response or an incorrect response). Performance was assessed using hits 
(correct responses to the frequent category trials) and false alarms (incorrect or 
no responses to the infrequent category trials). These values were combined into 
a single non-parametric measure of sensitivity of A′ (for which chance is 0.5). To 
examine performance decrements over blocks, we calculated the average accuracy 
in infrequent trials and examined whether there was a reliably negative linear 
relationship across blocks. For each trial, the RT was calculated. Fluctuations in 
the trailing RT averaged over the 3 preceding trials (i − 2, i − 1 and i) predicted 
attention accuracy for the subsequent trial (i + 1). We examined the relationship 
between trailing RT and accuracy for each participant. First, we examined trailing 
RT differences between correct versus incorrect trials. We also sorted and binned 
trailing RTs (11 bins) and calculated the percentage of trials that were responded 
to correctly within each bin. Then, we examined whether there was a positive 
linear relationship between bin number (1–11) and accuracy (%). In addition, 
we calculated another signature of sustained attention abilities: RT variability. 
RT variability was calculated as the standard deviation of RTs for all correct 
frequent trials within each block and then averaged across all blocks. Sustained 
attention performance decrements were calculated by averaging the accuracy to all 
infrequent trials within each block.

Working memory data analysis. Working memory performance on the whole-
report task was summarized as the average number of items per trial for which 
the participants selected the correct colour. Working memory performance on the 
continuous report task was assessed using response error—the angular deviation 
between the selected and original colour. Performance was further quantified by 
fitting a mixture model to the distribution of response errors for each participant 
using MemToolbox32. We modelled the distribution of response errors as the 
mixture of a von Mises distribution centred on the correct value and a uniform 
distribution. We obtained maximum-likelihood estimates for two parameters: 
(1) the dispersion of the von Mises distribution (s.d.), which reflects response 
precision; and (2) the height of the uniform distribution (g), which reflects the 
probability of guessing.

Statistics. Because some of the data violated the assumption of normality, all 
statistics were computed using a non-parametric, random-effects approach 
in which participants were resampled with replacement 100,000 times33. Null 
hypothesis testing was performed by calculating the proportion of iterations in 
which the bootstrapped mean was in the opposite direction. Exact P values are 
reported (P values smaller than 1 in 1,000 are approximated as P < 0.001). Statistical 
results for directional hypotheses are noted as one tailed and non-directional 
hypotheses are noted as two tailed. We used an alpha level of 0.05 for statistical 
tests. The mean and 95% CIs of the bootstrapped distribution are reported as 
descriptive statistics. Correlations were computed using the non-parametric 
Spearman’s rank-order correlation function included in Scipy. Effect sizes were 
computed as Cohen’s d values in R. For experiment 3, we computed Jeffreys–
Zellner–Siow Bayes factors to evaluate the support for the point null (BF0) versus 
the directional hypothesis in R using the Bayes Factor library13. Parametric statistics 
are included in the online distribution of data and analyses. Data collection and 
analysis were not performed blind to the conditions of the experiments.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available online in an Open 
Science Framework repository (https://osf.io/hfeu8/), as well as a GitHub 
repository (https://github.com/AwhVogelLab/deBettencourt_rtAttnWM).

Code availability
The experimental design was programmed in Python 2.7 using PsychoPy (versions 
1.85 and 1.90). All analyses were conducted using custom scripts in Python 3 and 
R version 3. All codes for running the experiment and regenerating the results are 
available online in an Open Science Framework repository (https://osf.io/hfeu8/) 
along with a GitHub repository (https://github.com/AwhVogelLab/deBettencourt_
rtAttnWM).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data was collected in Python 2.7 using Psychopy versions 1.85 and 1.90. Code for running the experiment is posted 

Data analysis Data was analyzed in Python 3.6. All analysis code is made publicly available

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All code for running the experiment as well as regenerating all of the results from the raw behavioral data files are available online in an Open Science Framework 
repository [https://osf.io/hfeu8/] as well as a github repository [https://github.com/AwhVogelLab/deBettencourt_attnWM]
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The data are quantitative experimental behavioral data.

Research sample The research sample was male and female adult humans from Chicago who participated for undergraduate course credit or pay. Those 
participating for credit were University of Chicago undergraduate students. In total, 177 people participated 112 female, mean 22.1 
years).

Sampling strategy The target sample size a priori of each study was set to approximately 24, based on previous studies of sustained attention 
(deBettencourt, Norman & Turk-Browne, 2018). Because we developed the paradigm specifically to test this hypothesis, no  statistical 
methods were used to predetermine sample sizes prior to data collection.

Data collection Data were collected on a PC running Windows 7 using Psychopy running on Python 2.7 version 1.85.2 (Experiments 1&2) and version 
1.90.3 (Experiment 3). Participants were seated alone at a computer in a behavioral running room.  The researcher was aware of the 
study hypotheses during data collection.

Timing Data collection began February 26th, 2018. Data collection terminated January 16th, 2019 
Experiment 1a: February 25 – April 12 
Experiment 1b: April 12 – May 1 
Experiment 2a: May 3 - May 31 
Experiment 2b: June 14 – June 22 
Experiment 3a: Sept 18 - Sept 28  
Experiment 3b: Dec 12 - Jan 16 
Experiment 3c: Dec 6 - Dec 10

Data exclusions One participant left the study early without competing it. Eight participants who completed the study were excluded as their 
performance in either task exceeded three standard deviations from the population mean in that study. 

Non-participation One participant left the study early without completing it. No participant declined participation. 

Randomization Participants were allocated to experiments based on when they signed up for the study. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above

Recruitment Participants were recruited from the University of Chicago and Awh/Vogel Laboratory subject pools for course credit or pay. The 
credit participants were exclusively University of Chicago students.

Ethics oversight The study protocol was approved by the University of Chicago Social & Behavioral Sciences Institutional Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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