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Visual perception is dramatically impaired when a peripheral target is embedded within clutter, a
phenomenon known as visual crowding. Despite decades of study, the mechanisms underlying crowding
remain a matter of debate. Feature pooling models assert that crowding results from a compulsory
pooling (e.g., averaging) of target and distractor features. This view has been extraordinarily influential
in recent years, so much so that crowding is typically regarded as synonymous with pooling. However,
many demonstrations of feature pooling can also be accommodated by a probabilistic substitution model
where observers occasionally report a distractor as the target. Here, we directly compared pooling and
substitution using an analytical approach sensitive to both alternatives. In four experiments, we asked
observers to report the precise orientation of a target stimulus flanked by two irrelevant distractors. In all
cases, the observed data were well described by a quantitative model that assumes probabilistic
substitution, and poorly described by a quantitative model that assumes that targets and distractors are
averaged. These results challenge the widely held assumption that crowding can be wholly explained by
compulsory pooling.
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Objects in the periphery of a scene are more difficult to identify
when presented amid clutter. This phenomenon is known as visual
crowding, and it is thought to impose fundamental constraints on
reading (e.g., Pelli et al., 2007; Chung, 2002; Levi, Song, & Pelli,
2007) and object recognition (e.g., Levi, 2008; Whitney & Levi,
2011; Pelli, 2008; Pelli & Tillman, 2008). Moreover, mounting
evidence suggests that crowding is amplified in a number of
developmental and psychiatric disorders, including ADHD (Ste-
vens et al., 2012) and dyslexia (Moores, Cassim, & Talcott, 2011;
Spinelli et al., 2002). Thus, there is a strong motivation to under-
stand the basic factors that mediate this phenomenon.

Explanations of crowding typically invoke one of two broad
theoretical models. On the one hand, pooling models assert that
crowding results from a compulsory integration of information
across stimuli (e.g., Parkes, Lund, Angelucci, Solomon, & Mor-
gan, 2001; Greenwood, Bex, & Dakin, 2009, 2010). Although this

integration preserves the ensemble statistics of a display (e.g.,
mean size or orientation), it prohibits access to the individual
stimuli from which these statistics are derived. In an influential
paper, Parkes et al. (2001) asked observers to report the tilt
(clockwise or counterclockwise from horizontal) of a target Gabor
embedded within an array of horizontal distractors. On each trial,
a variable number of the distractors were tilted in the same direc-
tion (and by the same magnitude) as the target. Tilt thresholds (i.e.,
the minimum target tilt needed for observers to perform the task
with criterion accuracy) were found to decrease monotonically as
the number of tilted distractors increased, and these data were
well-approximated by a quantitative model which assumes that
target and distractor tilts were averaged at an early stage of visual
processing (e.g., prior to the point where the orientation of any one
stimulus could be accessed and reported). In a second experiment,
Parkes et al. asked observers to report the configuration of three
tilted patches (e.g., horizontal or vertical) presented among hori-
zontal distractors. Performance on this task was at chance, indi-
cating that even though the number of tilted distractors in the
display had a substantial effect on tilt thresholds, observers could
not access or report the tilt(s) of individual items.

In a third experiment, Parkes et al. (2001) asked observers to
report the tilt of a target patch embedded within an array of
horizontally tilted, similarly tilted (i.e., same direction as the
target), or dissimilarly tilted (i.e., different direction from the
target) distractors. As before, embedding a target within in array of
similarly tilted distractors reduced tilt thresholds (relative to dis-
plays containing horizontally tilted distractors). However, perfor-
mance was drastically reduced for displays where distractors were
tilted opposite the target. Specifically, it was no longer possible to
estimate tilt thresholds for either of the observers who participated
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in this experiment. A simple pooling model provides a straight-
forward explanation of this result: if orientation signals are aver-
aged at an early stage of visual processing, then presenting a target
among similarly tilted distractors should facilitate observers’ per-
formance relative to a condition where the target is presented
among horizontal distractors. Conversely, presenting the target
among dissimilarly tuned distractors should yield a percept of
horizontal or opposite tilt, leading to an increased number of
incorrect responses.

Pooling models have enjoyed widespread popularity in recent
years, so much so that the term “pooling” has become nearly
synonymous with crowding. However, an important alternative
view asserts that crowding stems from the spatial uncertainty
inherent in peripheral vision. Unlike pooling models, these so-
called “substitution“ models assume that observers can access the
individual feature values from the items within a display, but are
incapable of differentiating these feature values across space. Our
view is that substitution errors are capable of describing many (if
not all) findings that appear to support compulsory feature pooling.
Consider the study by Parkes et al. (2001), where tilt thresholds
were found to decrease as the number of tilted distractors in-
creased. These findings are consistent with feature pooling, but
they can also be accommodated by a substitution model. For
example, assume that the observer substitutes a distractor for a
target on some proportion of trials, and assume further that each
distractor in a given display is equally likely to be substituted for
the target. Under these conditions, increasing the number of tilted
patches will naturally increase the likelihood that one tilted patch
will be substituted for the identically tilted target, and tilt discrim-
ination performance should be largely unaffected. Conversely,
decreasing the number of tilted patches in the display will increase
the likelihood that a horizontal distractor will be substituted for the
tilted target, forcing the observer to guess and leading to an
increase in tilt thresholds.1 This could also explain why perfor-
mance was impaired when targets were embedded within arrays of
oppositely tilted distractors—if a clockwise distractor is substi-
tuted for a counterclockwise target, the observer will incorrectly
report that the target is tilted clockwise. If substitutions are prob-
abilistic (i.e., they occur on some trials but not others) then
observers’ performance could fall to near-chance levels and make
the estimation of tilt thresholds virtually impossible.

More recently, Greenwood and colleagues (2009) reported that
pooling can also explain crowding for “letter-like” stimuli. In this
study, observers were required to report the position of the hori-
zontal stroke of a cross-like stimulus that was flanked by two
similar distractors. Results suggested that observers’ estimates of
stroke position were systematically biased by the position of the
distractors’ strokes. Specifically, observers tended to report that
the target stroke was located midway between its actual position
and the position of the flanker strokes. This result is consistent
with a model of crowding in which the visual system averages
target and distractor positions. However, this result may reflect the
interaction of two response biases rather than positional averaging
per se. For example, observers responses were systematically
repulsed away from the stimulus midpoint (i.e., observers rarely
reported the target as a “�”). We suspect that observers had a
similar disinclination to report extreme position values (i.e., it is
unlikely that observers would report the target as a “T”), though
the latter possibility cannot be directly inferred from the available

data. However, these biases could impose artificial constraints on
the range of possible responses, and may have led to an apparent
“averaging” where none exists.

Although probabilistic substitution provides a viable alternative
explanation of apparent feature pooling in crowded displays, there
are important limitations in the evidence supporting it. Specifi-
cally, virtually all studies favoring substitution have employed
categorical stimuli (e.g., letters or numbers; Wolford, 1975; Stras-
burger, 2005; though see Gheri & Baldassi, 2008 for a notable
exception) that preclude the report of an averaged percept. For
example, observers performing a letter report task cannot report
that the target “looks like the average of an E and a B.” In the
current study, we attempted to overcome this limitation by using a
task and analytical procedure that could provide direct evidence
for both pooling and substitution. Specifically, we asked observers
to report the orientation of a “clock-face” stimulus (see Figure 1)
that appeared alone or was flanked by two irrelevant distractors.
We then examined how observers’ report errors (i.e., the angular
difference between the reported and actual target orientations on a
given trial) were influenced by the introduction of distractors. If
crowding results from a compulsory pooling of target and distrac-
tor features at a relatively early stage of visual processing, then one
would expect observers’ report errors to be biased toward the
average orientation of items in the display (as in Parkes et al.,
2001). Alternately, if crowding results from a probabilistic substi-
tution of target and distractor features, then one would expect
observers’ report errors to take the form of a bimodal distribution,
with one peak centered over the target’s orientation and a second
peak over the distractors’ orientation.

Experiment 1

In Experiment 1, observers were asked to report the orientation
of a clock-face stimulus presented in the periphery of a display
(see Figure 1). On 50% of trials, only the target was presented
(uncrowded trials). On the remaining 50% of trials, the target was
flanked by two irrelevant distractors (crowded trials). When pres-
ent, the distractors were rotated � 60, 90, or 120° relative to the
target. For each experimental condition, we modeled observers’
report errors (i.e., the angular distance between the reported and
actual target orientations) with quantitative functions derived from
the assumptions of a pooling model and a substitution model. We
then compared these models to determine which provided a better
description of the observed data (see Data Analysis and Model
Fitting).

Method

Participants. Eighteen undergraduate students from the Uni-
versity of Oregon participated in a single 1.5-hour testing session
in exchange for course credit. All observers reported normal or

1 As noted above, Parkes et al. (2001) reported that a quantitative model
that assumes pooling provided a good description of their data. This model
also outperformed a “max” model, where each patch is monitored by two
noisy “detectors” (one per response alternative), and the observer’s re-
sponse on a given trial is determined by the detector with the largest
response. However, this model does not exclude other forms of substitu-
tion, including any model where the likelihood that a given distractor is
substituted for the target is independent of that distractor’s properties.
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corrected-to-normal visual acuity, and all gave written and oral
informed consent. All experimental procedures were approved by
the local institutional review board.

Stimuli and apparatus. Stimuli were generated in Matlab
using Psychophysics toolbox software (Brainard, 1997; Pelli,
1997) and rendered on an 18-inch CRT monitor cycling at 120 Hz.
All stimuli were black and rendered on a medium-gray background
(60.2 cd/m2). Participants were seated approximately 60 cm from
the display, though head position was unconstrained. From this
distance, clock-face stimuli subtended 2.67° in diameter and were
centered � 9.23° from fixation along the horizontal meridian. The
center-to-center distance between stimuli was fixed at 3.33°.

Design and procedure. A representative trial is depicted in
Figure 1. Each trial began with the presentation of a fixation array
containing a central black dot (subtending 0.25°) flanked by two
small white placeholders (0.18°) at � 9.23° eccentricity along the
horizontal meridian. After 500 ms, a target array was presented for
75 ms. On 50% of trials, a single, randomly oriented clock-face
stimulus (the target) appeared over one of the two placeholders
(uncrowded trials; not shown). On the remaining 50% of trials, the
target was flanked by two distractors (crowded trials; Figure 1).
Crowded and uncrowded trials were fully mixed within blocks.
When present, the distractors were rotated � 60, 90, or 120°
relative to the target (both distractors had the same orientation on
a given trial). Observers were explicitly instructed to ignore the
distractors and focus on reporting the target that appeared over one
of the two placeholders. After a 250 ms blank interval, a randomly
oriented probe was rendered at the same spatial location as the
target; observers rotated this probe using the arrow keys on a

standard U.S. keyboard until it matched their percept of the tar-
get’s orientation, and entered their final response by pressing the
spacebar. Observers were instructed to respond as precisely as
possible, and no response deadline was imposed. A new trial began
250 ms after their response. Each observer completed 15 blocks of
72 trials, for a total of 1,080 trials.

Data analysis and model fitting. For each experimental con-
dition, we fit observers’ report errors (at the group and individual
level) with quantitative functions that capture key predictions of
pooling and substitution models. During uncrowded trials, we
assume that the observer encodes a representation of the target’s
orientation with variability �. Thus, the probability of observing a
response x (where –� � x � �) is given by a von Mises
distribution (the circular analog of a standard Gaussian) with mean
� (uniquely determined by the perceived target orientation, �) and
concentration k (uniquely determined by � and corresponding to
the precision of the observer’s representation2):

p(x � �, �) �
ekcos(x��)

2	I0(k)
(1)

where I0 is the modified Bessel function of the first kind of order
0. In the absence of any systematic perceptual biases (i.e., if � is a
reliable estimator of the target’s orientation), then estimates of �
should take values near the target’s orientation and observers’
performance should be limited solely by noise (�).

The same model can be used to approximate observers’ perfor-
mance on crowded trials given a pooling model like the one
described by Parkes et al. (2001). Consider a scenario where a 0°
target is flanked by two distractors rotated by 60° (relative to the
target). If these values are averaged prior to reaching awareness,
then one would expect the observer’s percept, �, to resemble the
mean of these orientations: (60° � 60° � 0°)/3 � 40°, and
estimates of � should be near this value.3 Of course, more complex
pooling models are plausible (see, e.g., Freeman, Chakravarthi, &
Pelli, 2012). For example, one possibility is that pooling occurs on
only a subset of trials. Alternately, pooling might reflect a nonlin-
ear combination of target and distractor features (e.g., perhaps
targets are “weighted” more heavily than distractors). However,
we note that Parkes et al. (2001) and others have reported that a
linear averaging model was sufficient to account for crowding-
related changes in tilt thresholds. Nevertheless, in the present
context any pooling model must predict the same basic outcome:
observers’ orientation reports should be systematically biased
away from the target and toward a distractor value. Thus, any bias
in estimates of � can be taken as evidence for pooling.

Alternately, crowding might reflect a substitution of target and
distractor orientations. For example, on some trials the partici-
pant’s report might be determined by the target’s orientation, while
on others it might be determined by a distractor orientation. To
examine this possibility, we added a second von Mises distribution

2 Here, � and � are psychological constructs corresponding to bias and
variability in the observer’s orientation reports, and � and k are estimators
of these quantities.

3 In this formulation, all three stimuli contribute equally to the observ-
ers’ percept. Alternately, because distractor orientations were yoked in this
experiment, only one distractor orientation might contribute to the average.
In this case, the observer’s percept should be (60 � 0)/2 � 30°. We
evaluated both possibilities.

Figure 1. Behavioral Task. Trials began with a fixation array (upper
panel) for 500 ms. The small white dots to the left and right of fixation
denoted where a target could appear. The target array (middle panels) was
then presented for 75 ms. Observers were instructed to discriminate the
orientation of the clock face appearing over the placeholder. On 50% of
trials, only the target was presented (“uncrowded” trials, not shown). On
the remaining 50% of trials the target was flanked by two distractors. When
present, these distractors were rotated � 60, 90, or 120°. At the end of each
trial a randomly oriented probe was rendered at the same location as the
target (bottom panel); observers adjusted the orientation of this stimulus
until it matched their percept of the target’s orientation.
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to Equation 2 (following an approach developed by Bays, Catalao,
& Husain, 2009):

p(x � �t, �nt, �, nt) � (1 � d)
ekcos(x��t)

2	I0(k)

 d

ekcos(x��nt)

2	I0(k)
(2)

Here, �t and �nt are the means of von Mises distributions (with
concentration k) relative to the target and distractor orientations
(respectively). nt (uniquely determined by estimator d) reflects the
relative frequency of distractor reports and can take values from 0
to 1.

During pilot testing, we noticed that many observers’ response
distributions for crowded and uncrowded contained small but
significant numbers of high-magnitude errors (e.g., �140°). These
reports likely reflect instances where the observed failed to encode
the target (e.g., due to lapses in attention) and was forced to guess.
Across many trials, these guesses will manifest as a uniform
distribution across orientation space. To account for these re-
sponses, we added a uniform component to Eqs. 1 and 2. The
pooling model then becomes:

p(x � �t, �nt, �, nr) � (1 � r)
ekcos(x��)

2	I0(k)



r

2	
(3)

and the substitution model:

p(x � �t, �nt, �, nt, nr) � (1 � d � r)
ekcos(x��t)

2	I0(k)

 d

ekcos(x��nt)

2	I0(k)



r

2	

(4)

In both cases, nr is height of a uniform distribution (uniquely
determined by estimator r) that spans orientation space, and it
corresponds to the relative frequency of random orientation re-
ports.

To distinguish between the pooling (Eqs. 1 and 3) and substi-
tution (Eqs. 2 and 4) models, we used Bayesian Model Compari-
son (Wasserman, 2000; MacKay, 2003). This method returns the
likelihood of a model given the data while correcting for model
complexity (i.e., number of free parameters). Unlike traditional
model comparison methods (e.g., adjusted r2 and likelihood ratio
tests), BMC does not rely on single-point estimates of model
parameters. Instead, it integrates information over parameter
space, and thus accounts for variations in a model’s performance
over a wide range of possible parameter values.4 Briefly, each
model described in Eqs. 1–4 yields a prediction for the probability
of observing a given response error. Using this information, one
can estimate the joint probability of the observed errors, averaged
over the free parameters in a model—that is, the model’s likeli-
hood:

L(M) � p(D � M) � � p(� � M)p(D � �)d�

� � �
i�1

Ntrials

p(Di � �)p(� � M)d� (5)

where M is the model being scrutinized, 	 is a vector of model
parameters, and D is the observed data. For simplicity, we set the
prior over the jth model parameter to be uniform over an interval
Rj (intervals are listed in Table 1). Rearranging Eq. 5 for numerical
convenience:

logL(M) � Lmax(M) � �
j�1

dim�

logRj 
 log� elogLmax(�)�logLmax(M)d�

(6)

Here, dim 	 is the number of free parameters in the model and
Lmax(M) is the maximized log likelihood of the model.

Results

Figure 2 depicts the mean (�1 SEM) distribution of report errors
across observers during uncrowded trials. As expected, report
errors were tightly distributed around the target orientation (i.e., 0°
report error), with a small number of high-magnitude errors. Ob-
served error distributions were well-approximated by the model
described in Eq. 3 (mean r2 � 0.99 � 0.01), with roughly 5% of
responses attributable to random guessing (see Table 2). Of greater
interest were the error distributions observed on crowded trials. If
crowding results from a compulsory integration of target and
distractor features at a relatively early stage of visual processing
(before features can be consciously accessed and reported), then
one would expect distributions of report errors to be biased toward
a distractor orientation (and thus, well-approximated by the pool-
ing models described in Eqs. 1 and 3). However, the observed
distributions (see Figure 3) were clearly bimodal, with one peak
centered over the target orientation (0° error) and a second, smaller
peak centered near the distractor orientation. To characterize these
distributions, the pooling and substitution models described in
Equations 1–4 were fit to each observer’s response error distribu-
tion using maximum likelihood estimation. Bayesian model com-
parison (see Figure 4) revealed that the log likelihood5 of the
substitution model described in Eq. 4 (hereafter SUB � GUESS)
was 57.26 � 7.57 and 10.66 � 2.71 units larger for the pooling
models described in Eqs. 1 and 3 (hereafter POOL and POOL �
GUESS), and 23.39 � 4.10 units larger than the substitution model
described in Eq 2. (hereafter SUB). For exposition, that the SUB �
GUESS model is 10.66 log likelihood units greater than the
POOL � GUESS model indicates that the former model is e10.66,

4 We also report traditional goodness-of-fit measures (e.g., adjusted r2

values, where the amount of variance explained by a model is weighted to
account for the number of free parameters it contains) for the pooling and
substitution models described in Eqs. 3 and 4. However, we note that these
statistics can be influenced by arbitrary choices about how to summarize
the data, such as the number of bins to use when constructing a histogram
of response errors (e.g., one can arbitrarily increase or decrease estimates
of r2 to a moderate extent by manipulating the number of bins). Thus, they
should not be viewed as conclusive evidence suggesting that one model
systematically outperforms another.

5 Figure 4 shows estimated log likelihood values (relative to the sub �
nr model) for the � 60°, � 90°, and � 120° distractor rotation conditions.
However, as the same trends were observed within each of these condi-
tions, likelihood values were subsequently pooled and averaged.

Table 1
Range of Parameter Values Used for Bayesian Model
Comparison in Experiment 1

�t �d k nt nr

Range 
180:180 0:180 0.1:50 0:0.5 0:0.5
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or �42,617 times more likely to have produced the data (compared
to the POOL � GUESS model). At the individual subject level, the
SUB � GUESS model outperformed the POOL � GUESS model
for 17/18 (� 60° rotations), 14/18 (� 90°) and 15/18 (� 120°)
subjects. Classic model comparison statistics (e.g., adjusted r2)
revealed a similar pattern. Specifically the SUB � GUESS model
accounted for 0.95 � 0.01, 0.94 � 0.01, and 0.94 � 0.01 of the
variance in error distributions for � 60, 90, and 120° distractor
rotations, respectively. Conversely, the POOL � GUESS model
accounted for 0.34 � 0.17, 0.88 � 0.04, and 0.90 � 0.03 of the
observed variance. For the latter model, most high magnitude
errors were absorbed by the nr parameter; there was little evidence
for a large shift in �t toward distractor values (mean �t esti-
mates � 7.28 � 2.03, 1.75 � 1.79, and 0.84 � 0.41° for � 60, 90,
and 120° distractor rotations, respectively). Together, these find-
ings constitute strong evidence in favoring a substitution model.

Mean (� SEM) maximum likelihood estimates of �, k, and nr
(for uncrowded trials), as well as �t, �nt, k, nt, and nr (for crowded
trials) obtained from the SUB � GUESS model are summarized in
Table 1. Estimates of �t rarely deviated from 0 (the sole exception
was during � 60° rotation trials; M � 1.34°; t(17) � 2.26, p � .03;
two-tailed t tests against distributions with � � 0), and estimates
of �nt were statistically indistinguishable from the “real” distractor
orientations (i.e., � 60, 90, 120°), t(17) � 0.67, 
0.57, and 1.61
for � 60, 90, and 120° trials, respectively; all p values �0.12.
Within each condition, distractor reports accounted for 12–15% of
trials, while random responses accounted for an additional 15–
18%. Distractor reports were slightly more likely for � 60° dis-
tractor rotations (one-way repeated-measures analysis of variance,
F(2, 17) � 3.28, p � .04), consistent with the basic observation
that crowding strength scales with stimulus similarity (Kooi, Toet,
Tripathy, & Levi, 1994; Felisberti, Solomon, & Morgan, 2005;
Scolari, Kohnen, Barton, & Awh, 2007; Põder, 2012).

Examination of Table 2 reveals other findings of interest. First,
estimates of k were significantly larger during crowded relative to
uncrowded trials; t(17) � 7.28, 3.82, and 4.80 for � 60, 90, and
120° distractor rotations, respectively, all ps  0.05. In addition,
estimates of nr were 10–12% higher for crowded relative to
uncrowded trials; t(17) � 4.97, 7.11, and 6.32 for the � 60, 90,
and 120° distractor rotations, respectively, all ps  0.05. Thus, at
least for the current task, crowding appears to have a deleterious
(though modest) effect on the precision of orientation representa-
tions. In addition, it appears that crowding may result in a total loss
of orientation information on a subset of trials. We suspect that
similar effects are manifest in many extant investigations of
crowding, but we know of no study that has documented or
systematically examined this possibility.

Discussion

To summarize, the results of Experiment 1 are inconsistent with a
simple pooling model where target and distractor orientations are
averaged prior to reaching awareness. Conversely, they are easily
accommodated by a probabilistic substitution model in which the
observer occasionally mistakes a distractor orientation for the target.
Critically, the current findings cannot be explained by tachistoscopic
presentation times (e.g., 75 ms) or spatial uncertainty (e.g., the fact
that observers had no way of knowing which side of the display
would contain the target on a given trial) as prior work has found clear
evidence for pooling under similar conditions (e.g., Parkes et al.,
2001, where displays were randomly and unpredictably presented to
the left or right of fixation for 100 ms).

One important difference between the current study and prior work
is our use of (relatively) dissimilar targets and distractors. Accord-
ingly, one might argue that our findings reflect some phenomenon
(e.g., masking) that is distinct from crowding. However, we note that
we are not the first to document strong “crowding” effects with
dissimilar targets and flankers. In one high-profile example, He,
Cavanagh, and Intriligator (1996; see also Blake, Tadin, Sobel, Rais-
sian, & Chong, 2006) documented strong crowding when a tilted
target grating was flanked by orthogonally tilted gratings. In another
example, Pelli, Palomares, and Majaj (2004) reported strong crowd-
ing effects when a target letter (e.g., R) was flanked by two very
dissimilar letters (S and Z; see their Figure 1). Thus, the use of
dissimilar targets and distractors does not preclude crowding.

Alternately, one could argue that our findings reflect a special form
of crowding that manifests only when targets and flankers are very
dissimilar. For example, perhaps pooling dominates when similarity is
high, whereas substitution dominates when it is low. We are not aware
of any data supporting this specific alternative, but there are a handful
of studies suggesting that different forms of interference manifest

Table 2
Mean (�1 SEM) Parameter Estimates Obtained From the SUB � GUESS Model in Experiment
1. All Values of �t �d and k Are in Degrees

�t �d k nt nr

Uncrowded 
0.27 (0.28) — 12.00 (0.48) — 0.05 (0.02)
Crowded: �60° 1.34 (0.59) 64.32 (6.38) 14.67 (0.72) 0.14 (0.02) 0.15 (0.02)
Crowded: �90° 0.13 (0.40) 88.63 (2.39) 13.72 (0.71) 0.12 (0.02) 0.18 (0.02)
Crowded: �120° 0.69 (0.42) 123.78 (2.35) 14.77 (0.94) 0.13 (0.02) 0.17 (0.02)

Figure 2. Distribution of mean (� 1 SEM) report errors during un-
crowded trials in Experiment 1.
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when target–distractor similarity is high versus low. In one example,
Mareschal, Morgan, and Solomon (2010; see also Solomon, Felis-
berti, & Morgan, 2004; Põder, 2012) asked participants to report the
tilt (clockwise or anticlockwise from horizontal) of a crowded grating.
These authors reported that estimates of orientation bias (defined as
the minimum target tilt needed for a target to be reported clockwise or
anticlockwise of horizontal with equal frequency) were small and
shared the same sign (i.e., clockwise vs. anticlockwise) of similarly
tilted flankers (e.g., within 5° of the target) at extreme eccentricities
(10° from fixation). However, estimates of bias were larger and of the
opposite sign for dissimilar flankers (greater than 10° away from the
target) at intermediate eccentricities (4° from fixation; see their Figure
2 on page 4). These results were interpreted as evidence for “small
angle assimilation” and “repulsion,” respectively. However, we sus-
pect that both effects can be accounted for by probabilistic substitu-
tion. Consider first the case of “small-angle assimilation.” Because
participants in this study were limited to categorical judgments (i.e.,
clockwise vs. counterclockwise), this effect would be expected under
both pooling and probabilistic substitution models. For example,
participants may be more inclined to report a �5° target embedded
within �10° flankers as “clockwise” either because they have aver-
aged these orientations or because they have mistaken a flanker for the

target. As for repulsion, the “bias” values reported by Mareschal et al.
imply that that (for example) a target embedded within 
22° flankers
needs to be tilted about �10° clockwise in order to be reported as
clockwise and anticlockwise with equal frequency. This result can be
accommodated by substitution if one assumes that “crowding” be-
comes less potent as the dissimilarity between targets and distractors
increases. In this framework, “bias” may simply reflect the amount of
target–flanker dissimilarity needed for substitution errors to occur on
�50% of trials.

Finally, we would like to note that our use of dissimilar distrac-
tor orientations (relative to the target) was motivated by necessity.
Specifically, it becomes virtually impossible to distinguish be-
tween the pooling and substitution models (Eq. 3 and Eq. 4,
respectively) when target–distractor similarity is high (see Hanus
& Vul, 2013, for a similar argument). To illustrate this, we sim-
ulated report errors from a substitution model (Eq. 4) for 20
synthetic observers (1,000 trials per observer) over a wide range of
target-distractor rotations (� 10–90° in 10° increments). For each
observer, values of �t, �nt, k, nt, and nd were obtained by sampling
from normal distributions whose means equaled the mean param-
eter estimates (averaged across all distractor rotation magnitudes)
given in Table 2. We then fit each hypothetical observer’s report
errors with the pooling and substitution models described in Eqs.
3 and 4. For large target–distractor rotations (e.g., � 50°), accurate
parameter estimates for the substitution model (i.e., within a few
percentage points of the “true” parameter values) could be ob-
tained for the vast majority (N � 18) of observers, and this model
always outperformed the pooling model. Conversely, when target–
distractor rotation was small (�40°) we could not recover accurate
parameter estimates for most observers, and the pooling model
typically equaled or outperformed the substitution model.6 Virtu-
ally identical results were obtained when we simulated an ex-
tremely large number of trials (e.g., 100,000) for each observer.
The explanation for this result is straightforward: as the angular
distance between the target and distractor orientations decreases, it
became much more difficult to segregate response errors reflecting

6 Both models returned similar log-likelihoods. However, the substitu-
tion model was penalized more harshly by BMC because it contains an
extra free parameter (nt).

Figure 3. Distributions of report errors observed during crowded trials of
Experiment 1. Panels A, B, and C depict the mean (� 1 SEM) histogram
(bin width � 14.4°) of report errors during trials where the distractors were
rotated by � 60, 90, and 120°, respectively (data were pooled across
clockwise and counterclockwise rotations). The best fitting substitution
model (SUB � GUESS; see text) is overlaid.

Figure 4. Bayesian Model Comparison–Experiment 1. Mean (� 1 SEM)
log-likelihood values for the POOL (Eq. 1), POOL � GUESS (Eq. 3), and
SUB (Eq. 2) models are plotted relative to the SUB � GUESS model. A
negative log-likelihood value, x, means that the data are ex times more
likely under the SUB � GUESS model.
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target reports from those reflecting distractor reports. In effect,
report errors determined by the distractor(s) were “absorbed” by
those determined by the target. Consequently, the observed data
were almost always better described by a pooling model, even
though they were generated using a substitution model! These
simulations suggest that it is very difficult to tease apart pooling
and substitution models as target–distractor similarity increases,
particularly once similarity exceeds the observers’ acuity for the
relevant stimuli.

Experiment 2

In Experiments 2 and 3, we systematically manipulated factors
known to influence the severity of crowding: target-distractor
similarity (e.g., Kooi et al., 1994; Scolari et al., 2007; Experiment
2) and the spatial distance between targets and distractors (e.g.,
Bouma, 1970; Experiment 3). In both cases, our primary question
was whether parameter estimates for the SUB � GUESS model
changed in a sensible manner with manipulations of crowding
strength.

Method

Participants. Seventeen undergraduate students from the
University of Oregon participated in a single 1.5-hour testing
session in exchange for course credit. All observers reported
normal or corrected-to-normal visual acuity, and all gave written
and oral informed consent. Data from one observer could not be

modeled due to a large number of high-magnitude errors; the data
here reflect the remaining 16 observers.

Design and procedure. The design of this experiment was
identical to that of Experiment 1, with the exception that on 50%
of distractor-present trials the target was rendered in red and the
distractors in black (“popout” trials). On the remaining 50% of
trials, both the target and distractors were black (“uniform” trials).
When present, distractors were always rotated � 110° relative to
the target.

Results

As in Experiment 1, Distributions of response errors observed
during uniform and popout trials were bimodal, with one distribution
centered over the target orientation and a second centered over the
distractors’ orientation (see Figure 5). For popout trials (i.e., when
crowding strength should be low), Bayesian model comparison (see
Figure 6) revealed that the log likelihood of the SUB � GUESS
model (Eq. 4) was 123.84 � 9.76, and 4.97 � 3.14, and 39.16 � 5.02
units larger than the POOL, POOL � GUESS, and SUB models,
respectively. During uniform trials (i.e., when crowding strength
should be high), the log likelihood of the SUB � GUESS model
exceeded the POOL, POOL � GUESS, and SUB models by
131.98 � 12.90, 14.57 � 3.66, and 45.46 � 5.87 units. At the
individual subject level, the SUB � GUESS model outperformed the
POOL � GUESS model for 9/16 subjects during popout trials and
14/16 subjects during uniform trials. Estimates of nt were lower
during popout relative to uniform trials (see Table 3; t(15) � 6.40,
p  .01), while estimates of nr were marginally lower; t(15) � 1.69,
p � .10. Estimates of �nt were statistically indistinguishable from the
actual distractor orientations (i.e., � 110°); t(15) � 0.21 and 0.57, for
popout and uniform trials, respectively, both ps � 0.50. Thus, the
results of Experiment 2 are consistent with those observed in Exper-
iment 1, and establish that the relative frequencies of distractor reports
change in a sensible manner with a factor known to influence the
severity of crowding.

Experiment 3

The results of Experiments 1 and 2 are readily accommodated
by a substitution model where observers occasionally substitute a
distractor for the target. In Experiment 3, we asked whether our
findings are idiosyncratically dependent on the use of yoked dis-
tractors. For example, the distractors in Experiments 1 and 2

Figure 5. Task performance in Experiment 2. Panels A and B depict the mean (� 1 SEM) distribution of report
errors across observers for popout (A) and uniform (B) trials. The best fitting SUB � GUESS model is overlaid
(solid black line).

Figure 6. Bayesian Model Comparison–Experiment 2. Mean (� 1 SEM)
log-likelihood values for the POOL (Eq. 1), POOL � GUESS (Eq. 3), and
SUB (Eq. 2) models are plotted relative to the SUB � GUESS model.
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always shared the same orientation. One possibility is that this
configuration encouraged a Gestalt-like grouping of the distractors
that discouraged pooling and/or encouraged target-distractor sub-
stitutions. To examine this possibility, distractors in Experiment 3
were randomly oriented with respect to the target (and each other).
In addition, we took this opportunity to examine how substitution
frequencies change with another well-known manipulating of
crowding strength: target-distractor spacing (e.g., Whitney & Levi,
2011; Pelli, 2008; Bouma, 1970).

Method

Participants. Fifteen undergraduate students from the Uni-
versity of Oregon participated in a single 1.5-hour testing session
in exchange for course credit. All observers reported normal or
corrected-to-normal visual acuity, and all gave written and oral
informed consent.

Design and procedure. Experiment 3 was similar to Experi-
ment 1, with the following exceptions: First, on 50% of crowded
trials, distractors were presented adjacent to the target (3.33°
center-to-center distance; “near” trials), while on the remaining
50% of crowded trials distractors were presented at a much greater
distance from the target (6.50° center-to-center distance; “far”
trials). Second, all distractors were randomly oriented with respect
to the target (and one another).

Modeling. Each crowded display contained two uniquely ori-
ented distractors in addition to the target. If these orientation
values are pooled prior to reaching awareness, then observers’
responses should be normally distributed around the mean orien-
tation of each display and can be approximated by Eq. 1. If errors
are instead determined by feature substitutions, then the probabil-
ity of observing response x is:

p(x � �, �, nt, nr) � (1 � nt � nr)
ekcos(x�t)

2	I0(k)

 nt

1

2�i�1

2 ekcos(x�nt)

2	I0(k)



nr

2	

(7)

where t refers to the target orientation and di refers to the
orientation of the ith distractor. For simplicity, we assumed that
each distractor had an equal probability of being substituted for the
target (subsequent analyses justified this assumption; see below).

Results and Discussion

Distributions of report errors relative to the target orientation
during near and far trials are shown in Figures 7A and 7B. Note
that both distributions feature a prominent central tendency, along
with a smaller uniform profile that spans orientation space. Since

distractor orientations varied randomly with respect to the target
(and each other) on each trial, the uniform profile in this distribu-
tion could reflect reports of distractor values. To examine this
possibility, we generated distributions of response errors relative
to the individual distractor orientations in each display (i.e., by
defining response error as the difference between the reported
orientation and a distractor’s orientation);7 these are plotted for
near and far trials in Figures 7C and 7D (respectively). Note that
the distribution observed during near trials (Figure 7C) features a
prominent central tendency, suggesting that observers did in fact
report distractors on some proportion of trials. Estimates of k, nt,
and nr for the near and far conditions are shown in Table 4. As
expected, increasing the separation between the target and distrac-
tor substantially reduced the frequency of distractor (M � 0.17 and
0.04, for near and far trials, respectively, t(14) � 4.60, p  0.001)
and random orientation reports (M � 0.20 and 0.12 for near and
far trials, respectively, t(14) � 5.78, p  .001). These findings
demonstrate that substitution errors varied in an orderly fashion
when we manipulated flanker distance (a factor known to modu-
late the strength of visual crowding). Moreover, they establish that
the findings described in Experiments 1 and 2 are not idiosyncratic
to the use of yoked distractors.

Experiment 4

How are targets and distractors substituted? One possibility is
that observers encode one—and only one—stimulus from a
crowded display (in this case, either the target or one of the two
distractors; Freeman et al., 2012). Alternately, observers might
enjoy access to information about all of the stimuli, but cannot
determine what information goes where (e.g., Balas, Nakano, &
Rosenholtz, 2009; Freeman et al., 2012). The goal of Experiment
4 was to distinguish between these two alternatives. The design of
this Experiment was identical to Experiment 1, with the exception
that observers were asked to report the average orientation of the
three display elements (henceforth referred to as center and flanker
items, respectively). If the simple substitution model is correct and
only one item from the display is encoded on each trial, then

7 Initially we constructed separate histograms for the inner and outer
distractors (relative to fixation, or equivalently, to the left and right of the
target, respectively) as some studies have documented strong effects of
inner flankers (relative to outer flankers; e.g., Chastain, 1982; Petrov &
Meleshkevich, 2001; Strasburger & Malania, 2013). Conversely, others
have reported strong crowding effects when displays contain only outer
flankers (e.g., Bouma, 1970; Estes & Wolford, 1971; Bex, Dakin, &
Simmers, 2003) distractors. In the present case, we observed no differences
between histograms for the inner and outer flankers (�2 tests; all p val-
ues �0.05), so the results were pooled and averaged.

Table 3
Mean (�1 SEM) Parameter Estimates Obtained in Experiment 2. Estimates Have Been
Collapsed and Averaged Across Clockwise and Counterclockwise Distractor Rotations. All
Values of � and k Are in Degrees

�t �d kt nt nr

Uncrowded 
0.98 (0.36) — 11.96 (0.73) — 0.03 (0.01)
Popout 0.46 (0.28) 108.33 (7.67) 12.58 (0.70) 0.05 (0.01) 0.11 (0.02)
Uniform 0.63 (0.37) 108.14 (3.26) 13.53 (0.74) 0.09 (0.02) 0.13 (0.02)
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observers’ report errors should be bimodally distributed around the
center and flanker orientations and well-described by a substitution
model (e.g., Eq. 4).8 Alternately, if observers enjoy access to all
the items in the display and can average these values, then their
report errors should be normally distributed around the mean
orientation of the three items in the display and performance
should be well-described by a pooling model (e.g., Eq. 3).

Method

Participants. Fifteen undergraduate students from the Uni-
versity of Oregon participated in Experiment 4. All observers
reported normal or corrected-to-normal visual acuity, and all gave
written and oral informed consent. Observers in each experiment
were tested in a single 1.5-hour session in exchange for course
credit.

Design and procedure. Experiment 4 was similar to that of
Experiment 1, with the exception that observers were now asked to
report the average orientation of the center (formerly “target”) and
flanking (formerly “distractor”) orientations. When present,
flanker orientations were rotated � 60, 90, or 120° relative to the
center orientation. Additionally, on 50% of trials the flankers were
rendered adjacent to the center stimulus; on the remaining 50% of
trials flankers were rendered at 6.67° eccentricity from the target
(as in Experiment 3). This was done to examine whether estimates
of mean orientation are unaffected by crowding strength, as has
been reported earlier (e.g., Solomon, 2010). To characterize ob-
servers’ performance, data were fit with the pooling and substitu-
tion models described in Eqs. 3 and 4.

Results and Discussion

Mean distributions of report errors (relative to the mean orien-
tation of the display) observed during near and far trials are shown
in Figures 8A and 8B, respectively.9 Data have been pooled and

averaged across distractor rotation direction (i.e., clockwise and
counterclockwise) and magnitude (i.e., 60, 90, 120°) as these
factors had no effects on our findings. Here, the pooling and
substitution models provided comparably good descriptions of the
observed distributions, and parsimony favors the simpler of the
two models (pooling). Mean (�1 SEM) estimates of � and k
obtained from the pooling model are shown in Table 4. The
estimated parameters were identical across all factors that we
manipulated (i.e., distractor rotation magnitude and target-
direction separation), t(14) � 0.84 and 1.11 for � and k, respec-
tively, both p values �0.25. This finding complements earlier
work (e.g., Solomon, 2010) suggesting that large variations in
crowding strength have no effect on an observer’s ability to report
mean orientation. More generally, the results of Experiment 4
provide further evidence favoring the view that observers have
access to feature values from multiple items within a crowded
display (see, e.g., Freeman et al., 2012).

8 Alternately, if observers are aware that they only have access to one
item from the display, they may simply guess. In this case, one would
expect a (roughly) uniform distribution of report errors.

9 Note that the distributions plotted in Figure 8 are relatively “broad”,
which seems inconsistent with the basic observation that human observers
are very good at accurately reporting summary statistics (e.g., mean size,
orientation, etc., see Alvarez & Oliva, 2008; Ariely, 2001; Chong &
Triesman, 2003, 2005). Specifically, the extant work suggests that human
observers are very good at extracting precise (i.e., high-fidelity) represen-
tations of summary statistics like average orientation. Thus, one might
expect the observed distributions to be tightly concentrated around 0°
report error. However, there are several important differences between this
work and the present study. First, many extant studies of ensemble per-
ception have used dense displays containing nearly homogenous stimuli
(e.g., 20 or more circles that vary in size from 3–5°). Second, many of these
studies ask observers to report whether a probe is larger or smaller than the
appropriate summary statistic. It seems plausible that observers might be
good at making these kinds of categorical judgments, but poor at actually
reproducing the appropriate statistic.

Figure 7. Task performance in Experiment 3. Panels A and B depict the mean (� 1 SEM) histogram (bin
width � 14.4°) of report errors across participants relative to the target orientation during near (A) and far (B)
trials. Conversely, panels C and D plot errors relative to the flankers’ orientations on near (C) and far (D) trials.
Note that the distribution of report errors during “near” trials (C) features a prominent central tendency. This
indicates that observers did, in fact, report distractor values on a subset of trials.
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General Discussion

Here, we show that when observers are required to report the
orientation of a crowded target, they report the target’s orientation
or the orientation of a nearby distractor (Experiments 1–3). The
frequency of distractor reports changed in a sensible manner with
well-established manipulations of crowding strength (Experiments
2 and 3), and are not idiosyncratic to the use of yoked distractors
(Experiment 3). Moreover, when observers were required to report
the average orientation of items in a display, strong manipulations
of crowding strength had a negligible effect on performance (Ex-
periment 4). Together, these results suggest that observers can
access and report individual feature values from a crowded dis-
play, but cannot bind these values to the appropriate spatial loca-

tions. In this respect, they challenge the widely held assumption
that visual crowding always reflects an averaging of target and
distractor features (Parkes et al., 2001; Pelli et al., 2004; Green-
wood et al., 2009, 2010; Balas et al., 2009).

Although our data favor a substitution model, we do not claim
that feature pooling is impossible or unlikely under all experimen-
tal conditions. Specifically, we cannot exclude the possibility that
substitution manifests primarily when target–distractor similarity
is low (as in the current study), whereas feature pooling manifests
when similarity is high (e.g., Cavanagh, 2001; Mareschal et al.,
2010). That said, we believe that there is ample room for doubt on
this point. First, we know of no evidence that supports this specific
view (see Discussion, Experiment 1 for a detailed discussion of
this point). Second, our simulations (Discussion, Experiment 1)
suggest that data consistent with feature pooling obtained under
high target–distractor similarity might not be that diagnostic. Spe-
cifically, we were unable to recover parameter estimates for the
substitution model (e.g., Eq. 4) when target–distractor similarity
was high, presumably because report errors determined by the
target and those determined by a distractor could no longer be
segregated. Consequently, a simple pooling model (e.g., Eq. 3)
almost always outperformed the substitution model, even though
the data were synthesized while assuming the latter. Although
some aspects of these simulations (e.g., the parameters of the
mixture distributions from which data were drawn) were idiosyn-
cratic to the current set of experiments, we suspect that the core
result—namely, that it is difficult to distinguish between pooling
and substitution when target–distractor similarity is high—gener-
alizes to many other experiments (see Hanus & Vul, 2013, for a
similar point).

We suspect that contributions from neuroscience will be instru-
mental in resolving this issue. For example, recent human neuro-
imaging studies have used encoding models to construct
population-level orientation-selective response profiles within and
across multiple regions of human visual cortex (e.g., V1-hV4; e.g.,
Brouwer & Heeger, 2011; Scolari, Byers, & Serences, 2012;
Serences & Saproo, 2012). These profiles are sensitive to fine-
grained perceptual and attentional manipulations (see, e.g., Scolari
et al., 2012), and pilot data from our laboratory suggests that they
may be influenced by crowding as well. One potentially informa-
tive study would be to examine how the population-level repre-
sentation of a target orientation changes following the introduction
of nearby distractors. This would be a useful complement to earlier
work demonstrating that the responses of orientation-selective
single units in cat (e.g., Gilbert & Wiesel, 1990; Dragoi, Sharma,
& Sur, 2000) and macaque (e.g., Zipser, Lamme & Schiller, 1996)
primary visual cortex are modulated by context. For example, one
possibility is that these response profiles will “shift” toward the
mean orientation of the target and distractor elements, consistent
with a pooling of target and distractor features. Alternately, the

Table 4
Mean (�1 SEM) Parameter Estimates Obtained in Experiment
3. Estimates Have Been Collapsed and Averaged Across
Clockwise and Counterclockwise Distractor Rotations. Values of
k Are in Degrees

k nt nr

Uncrowded 11.88 (0.57) — 0.04 (0.01)
Near 13.80 (0.64) 0.17 (0.03) 0.20 (0.03)
Far 13.60 (0.82) 0.05 (0.01) 0.12 (0.03)

Table 5
Mean (�1 SEM) Parameter Estimates Obtained in
Experiment 4

� k nr

Near 0.42 (1.80) 35.30 (2.47) 0.12 (0.03)
Far 1.16 (1.89) 40.33 (6.53) 0.10 (0.03)

Figure 8. Task Performance in Experiment 4. Panels A and B depict the
mean (� 1 SEM) histogram of report errors (bin width � 14.4°) relative to
the mean orientation of the center and flanker items during near (A) and far
(B) trials. Both distributions are unimodal, suggesting that observers could
in fact access, compute, and report the mean orientation of each display.
Moreover, this ability was unaffected by strong manipulations of crowding
strength, replicating earlier findings (e.g., Solomon, 2010).
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profile might shift toward the identity of a distractor orientation,
consistent with a substitution of the target with a distractor. We are
currently investigating these possibilities.

Our core findings are reminiscent of an earlier study by Gheri and
Baldassi (2008). These authors asked observers to report the specific
tilt (direction and magnitude relative to vertical) of a Gabor stimulus
embedded within an array of vertical distractors. These reports were
bimodally distributed over moderate tilt magnitudes (i.e., observers
seldom reported that the target was tilted by a very small or large
amount) and well-approximated by a “signed-max” model similar to
the one examined by Parkes et al. (2001). The current findings extend
this work in three important ways: First, we provide an explicit
quantitative measure of the relative proportion of trials for which
observers’ orientation reports were determined by the properties of a
distractor. The same measure also allows one to infer the acuity of
observers’ orientation estimates. Second, we show that the relative
frequencies of distractor reports change in an orderly way with ma-
nipulations of crowding strength. Third, we show that all findings
generalize across large pools of observers (Gheri & Baldassi [2008]
tested only three observers, one of whom was an author and a second
of whom could not perform the task without substantial alterations to
the stimulus display) and substantial variations in experimental con-
ditions (e.g., stimulus classes).

The findings reported here suggest a number of novel hypotheses
regarding factors that influence the severity of crowding. For exam-
ple, because the substitution model emphasizes binding errors, it
predicts that manipulations that facilitate binding, such as directing
attention to a crowded stimulus (He et al., 1996; Intriligator & Ca-
vanagh, 2001), will reduce the severity of crowding. Some recent
evidence supports this view (Livne & Sagi, 2007; Sayim, Wes-
theimer, & Herzog, 2010, 2011; Chakravarthi & Pelli, 2011; Yeotikar,
Khuu, Asper, & Suttle, 2011). In one example (Sayim et al., 2010),
observers were asked to discriminate the orientation of a vernier
stimulus. On some trials this stimulus was flanked by two horizontal
lines (line-only condition). On other trials, physically identical hori-
zontal lines were rendered as part of a geometric shape (e.g., a
rectangle; shape condition). Vernier discrimination thresholds were
substantially lower in the shape condition relative to the line-only
condition, suggesting that global contextual factors influence the
severity of crowding. Presumably, these and other grouping strategies
may reduce the severity of crowding by facilitating the individuation
of target and distractor stimuli. If so, then this may explain recent
findings where increasing the number of flankers surrounding a target
was found to reduce the severity of crowding (Põder, 2006; Levi &
Carney, 2009). Finally, one interesting question concerns whether
feature values can be “substituted” to empty portions of visual space.
If so, this could explain a recent finding in which oriented flankers
were found to confer a perceptual orientation to a Gaussian noise
patch (Greenwood et al., 2010).

To summarize, we have shown that when observers are required to
report the orientation of a crowded target, they report the target’s
orientation or the orientation of a nearby distractor. This result is
well-described by probabilistic substitution model where observers
occasionally confuse a distractor for a target, and poorly described by
a pooling model where information is integrated (e.g., averaged)
across targets and distractors prior to reaching awareness. While we
cannot claim that pooling is unlikely under all circumstances, our
view is that the available evidence supporting pooling is relatively

weak, and that many demonstrations of apparent pooling can also be
explained by a probabilistic substitution of targets and distractors.
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