
Working memory (WM) enables the active maintenance 
of information in a readily accessible state. In addition to 
its core role in most large-scale models of cognition (e.g., 
ACT–R: Anderson, 1993; EPIC: Kieras & Meyer, 1997), 
a central motivation for research on WM is that it exhibits 
robust correlations with broader measures of intellectual 
ability, such as scholastic aptitude and fluid intelligence 
(Cowan et al., 2005; Cowan, Fristoe, Elliott, Brunner, & 
Saults, 2006; Engle, 2002; Engle, Tuholski, Laughlin, & 
Conway, 1999). The link between WM capacity and fluid 
intelligence has been observed across a broad range of 
experimental paradigms. One prominent approach has 
demonstrated correlations between fluid intelligence and 
WM capacity estimated using complex span measures 
(e.g., Daneman & Carpenter, 1980; Turner & Engle, 
1989) that were designed to tap into both storage capacity 
and processing aspects of WM ability (e.g., Daneman & 
Carpenter, 1980; Engle et al., 1999; Kyllonen & Christal, 
1990; Turner & Engle, 1989). Moreover, although several 
studies have emphasized the importance of the process-
ing component in complex span tasks for the link with 
fluid intelligence, subsequent research has shown that 
even tasks that measure pure storage—in the absence of 
secondary processing loads—exhibit clear correlations 
with fluid intelligence (Colom, Flores-Mendoza, Quiroga, 
& Privado, 2005; Cowan et al., 2005). Specifically, such 
correlations are revealed when the task design prevents 
rehearsal and grouping processes that may skew a pure 
measure of storage capacity (e.g., Cowan, 2001; Cowan, 
Chen, & Rouder, 2004; Unsworth & Engle, 2007b).1 For 

example, Cowan et al. (2005) examined the relationship 
between fluid intelligence and WM capacity measured in 
a simple change detection task introduced by Luck and 
Vogel (1997). In that experiment, observers saw an array 
of multiple colored squares and then, after a brief delay, 
indicated whether any of the items in a subsequent test 
array had changed. Although this task did not impose any 
other attention-demanding tasks or interfering stimuli, the 
resulting estimates of WM capacity were reliably corre-
lated with fluid intelligence. Therefore, pure storage ca-
pacity alone is linked with the broader construct of fluid 
intelligence.

Evidence for a link between storage capacity in WM and 
fluid intelligence is an important step in our understand-
ing of the basic determinants of intelligence. In particular, 
such simple tasks allow for relatively straightforward con-
clusions regarding the core cognitive operations that play a 
role in fluid intelligence, thereby complementing the data 
from complex span procedures that tap into a broader range 
of cognitive abilities, including dual task coordination, re-
sistance to interference, access to secondary memory, and 
so on (e.g., Mogle, Lovett, Stawski, & Sliwinski, 2008; 
Unsworth & Engle, 2007a). Nevertheless, recent research 
has suggested that storage capacity in WM may not be a 
unitary construct. We refer here to a distinction between the 
number of items that can be held in WM and the resolution 
or precision of those representations. Xu and Chun (2006) 
provided neural evidence for such a dissociation with an 
imaging study that revealed distinct neural regions whose 
activity tracked the number of items that could be stored in 
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the same time, determining the nature of the pattern also 
requires a sufficiently detailed representation of these com-
plex objects to capture variations in the critical feature.

Our central goal in the present work, therefore, was to 
provide a rigorous test of which components of storage 
capacity in WM mediate the relationship with fluid intel-
ligence. The procedures that we used to measure number 
and resolution in WM were motivated by recent evidence 
that the primary limiting factors in change detection 
depend critically on the similarity between the sample 
items that are encoded into memory and the test items 
that are used to assess those memories (Awh et al., 2007; 
Barton, Ester, & Awh, 2009; Jiang, Shim, & Makovski, 
2008; Scolari, Vogel, & Awh, 2008). When sample–test 
similarity is low, such that changes are relatively large, 
accurate change detection depends primarily on whether 
the critical item was represented in WM. This is a core 
assumption of the analytic procedure for estimating ca-
pacity developed by Pashler (1988) and refined by Cowan 
(2001). Thus, the probability of detecting such large 
changes provides an estimate of how many items were 
encoded from the sample array. Importantly, this inter-
pretation of change detection performance has received 
strong converging support from studies of neural activity 
during the delay period of this task. Both electrophysi-
ological (McCollough, Machizawa, & Vogel, 2007; Vogel 
& Machizawa, 2004; Vogel, McCollough, & Machizawa, 
2005) and functional magnetic resonance imaging studies 
(Todd & Marois, 2004, 2005; Xu & Chun, 2006) have 
demonstrated that activity in the parietal cortex rises in a 
monotonic fashion as the number of items stored in WM 
increases. Critically, individual differences in neural re-
sponses during this task show that parietal activity reaches 
a plateau at the same set size at which the observer’s ca-
pacity has been exhausted (McCollough et al., 2007; Todd 
& Marois, 2005; Vogel & Machizawa, 2004). This strong 
link between behavioral measures of (large) change detec-
tion and delay-specific neural activity bolsters the appar-
ent validity of each method for estimating the number of 
items stored in WM. At the same time, behavioral perfor-
mance (Awh et al., 2007) and neural activity (Xu & Chun, 
2006) are qualitatively different when observers are asked 
to detect small changes between sample and test stimuli. 
Given that the same number of items is stored in these 
small-change tasks (Awh et al., 2007; Xu & Chun, 2006), 
we argue that errors in detecting these small changes may 
depend on whether the representations in WM have suf-
ficient resolution for discriminating between psychologi-
cally similar sample and test items. Therefore, the present 
work employs a small-change detection task to operation-
alize resolution in visual WM.

We collected multiple measures of number and resolu-
tion in visual WM, enabling a latent variable analysis that 
attempted to identify the underlying pure constructs that 
determine memory performance. This allowed a rigorous 
evaluation of whether these two aspects of performance 
do indeed reflect distinct aspects of memory ability, as 
is proposed by the two-factor model. In addition, this ap-
proach provided a clear test of how these two aspects of 
WM capacity relate to fluid intelligence.

WM, on one hand, and the complexity of the stored items, 
on the other hand. Given that more precise representations 
are required to support performance in memory tasks with 
complex stimuli, the results of Xu and Chun suggested that 
dissociable neural processes mediate number and resolu-
tion in visual WM. In line with this hypothesis, Awh, Bar-
ton, and Vogel (2007) examined individual differences in 
the number and resolution of representations in WM and 
found no correlation between these measures (despite hav-
ing established the internal reliability of each measure). 
That is, the subjects who could maintain the largest num-
ber of items in WM were not necessarily the subjects who 
had the clearest memories. These data suggest a two-factor 
model in which number and resolution represent distinct 
facets of WM ability.

The two-factor hypothesis raises a fundamental ques-
tion about the relationship between WM storage capac-
ity and fluid intelligence. If number and resolution are 
distinct aspects of memory ability, which of these factors 
mediates the link with fluid intelligence? At first glance, it 
is reasonable to expect both factors to predict performance 
in standard measures of fluid intelligence. Consider two 
nonverbal measures of fluid intelligence that are prevalent 
in the literature, Raven’s Advanced Progressive Matrices 
(RAPM) and Culture Fair Test (CFT). In each case, sub-
jects are required to identify a missing item that completes 
a larger pattern defined across multiple complex objects.

To illustrate, Figure 1 depicts a problem styled in this 
fashion. The goal of the task is to identify the patterns pre-
sented across the eight figures and to indicate which item 
below (A, B, or C) completes the pattern. In this example, 
the correct answer is C, consistent with a pattern in which 
one additional vertical line appears for each rightward shift 
in the matrix. Here, a compelling intuition is that patterns 
of this kind will be more efficiently apprehended when 
more items can be simultaneously kept active in WM. At 

Figure 1. A typical example of a fluid intelligence task. The cor-
rect answer is C.
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The rationale was that the detection of large changes would be 
limited primarily by whether the critical item was stored in WM, 
because the changes were large enough to minimize errors in the 
process of comparing an item in memory with the corresponding test 
item. By contrast, during small-change trials, we reasoned that even 
when the critical item was stored, the subjects’ ability to detect the 
changes would be primarily determined by whether the critical item 
was stored with sufficient resolution to discriminate the difference 
between the sample and test items (see Awh et al., 2007, for further 
discussion).2 Finally, we also included change detection trials with 
highly discriminable colored squares so that performance in this 
well-characterized variant of the change detection procedure could 
be compared with performance with the geometric shapes.

Stimuli
The stimuli in the change detection procedure were displayed on 

a centrally positioned light gray region (19.5º 3 19.5º) that appeared 
over a dark gray background. Sample arrays contained either four 
or eight items, evenly divided between the four quadrants of the 
screen, with a minimum center-to-center distance of 4º between the 
items. Colored squares (1.5º on each side) were used to generate 
sample displays during color trials. The possible colors were red, 
blue, green, yellow, black, and white; these colors were randomly 
selected with the constraint that no color appeared more than twice 
in a single sample array. During the shape trials, sample arrays were 
created by randomly selecting from the four possible shapes (1.3º on 
the short side and 2.5º on the long side) with the constraint that at 
least one rectangle and one oval were included in each array.

Procedure
A sample array of either four or eight objects was presented for 

500 msec, 1,092 msec after the onset of a central fixation point. A 
1-sec retention interval started at the offset of the sample array, fol-
lowed by the presentation of a single test item that remained visible 
until a response key was pressed. The subjects reported whether the 
object was the same object as the one presented at the same location 
in the memory array. The change detection procedure included nine 
blocks of 48 trials each. Within each block, 16 trials included color 
stimuli (8 same and 8 change trials, divided equally over set sizes 4 
and 8). The set size 4 trials were included for two reasons. First, 
there has been some indication in the literature that performance 
with smaller set sizes may have a weaker link with fluid intelligence, 
perhaps because subjects differ in their ability to handle supraspan 
displays (Cusack, Lehmann, Veldsman, & Mitchell, 2009); thus, in-
cluding both set sizes allowed us to replicate previous findings that 
set size may mediate the strength of the relationship with fluid intel-
ligence. Second, set size 8 trials were very difficult (given that they 
contain approximately twice the number of items that an average 
subject can store), and set size 4 trials may help to keep subjects 
from deciding that the task is intractable. The remaining 32 trials 
included the geometric shapes (16 same and 16 change trials, divided 
equally over set sizes 4 and 8). Shape memory arrays were created by 
randomly selecting from the four possible shapes. When one of the 
shapes changed (which had a probability of .5), it was replaced by a 
shape randomly selected from the remaining three shapes, such that 
approximately two thirds of the change trials involved big changes 
(i.e., from oval to rectangle or rectangle to oval), and the remain-
ing one third of the change trials were small changes (i.e., from oval 
to oval or rectangle to rectangle). To derive capacity estimates (k), 
we used the formula first invented by Pashler (1988) and refined by 
Cowan (2001): k 5 set size ∗ (hit rate 2 false alarm rate), where k 
represents the number of objects stored, set size is the number of 
items in the sample array, hit rate is the proportion of change trials 
correctly detected, and false alarm rate is the proportion of same tri-
als that elicited a change response. The k formula is a standard metric 
in the visual WM literature, because it corrects for response bias and 
enables a common metric of performance across different set sizes.3 
In the primary SEM analysis, we used the average k from the set 

METhod

Subjects
Seventy-nine undergraduate students from the University of Or-

egon participated for monetary compensation ($8/h). Each subject 
performed the two intelligence tests (CFT and RAPM) first and then 
performed the WM task.

Fluid Intelligence Measures
RAPM and the Cattell CFT were used to estimate individuals’ 

fluid intelligence. The CFT consists of four subsets of tasks, each 
of which takes about 2.5–4 min. The score on each subtest was 
summed to create a single metric for the CFT score. We also admin-
istered RAPM, using Set I as practice and Set II for measurement. 
First, the subjects completed four questions from Set I for instruc-
tion. Then, from Set II, subjects completed as many questions as 
they could answer in 30 min. The RAPM score was calculated as the 
number of correct answers in Set II.

obtaining Separate Measures of Number  
and Resolution in Visual WM

To assess number and resolution in visual WM, we adapted the 
change detection procedure employed by Awh et al. (2007). The pos-
sible stimuli consisted of four geometric shapes that were modeled 
after the line drawings used in the two nonverbal measures that we 
used to assess fluid intelligence, RAPM and CFT. The four shapes 
included two ovals and two rectangles. Thus, as Figure 2 illustrates, 
changes between the possible shapes varied systematically between 
large changes (i.e., when an oval shape changed to a rectangular 
shape, or vice versa) and small changes (i.e., changes from one oval 
to another or from one rectangle to the other). As the data will show, 
our assumptions regarding which types of changes were large or 
small were confirmed by large and reliable differences in change 
detection performance; accuracy in the large-change condition was 
more than twice as high as in the small-change condition. Next, we 
outline why performance in the large- and small-change conditions 
may be determined, respectively, by the number and the resolution 
of the representations stored in WM.

Figure 2. Illustration of a sample display (set size varied be-
tween 4 and 8) and the single-item probe display that appeared 
after a 1-sec retention period.

Large Change

Small Change

Sample Array
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three large-change conditions (color k, .84; big oval k, .88; 
big rect k, .90) all loaded strongly on a single factor, hereaf-
ter referred to as the number factor. By contrast, the small-
change conditions (small oval k, M 5 .87; small rect k, M 5 
.88) loaded on an orthogonal factor, hereafter referred to as 
the resolution factor (see Table 2).

There were no significant cross loadings ( p 5 .15). 
These data therefore conform precisely to the predictions 
of the two-factor model, suggesting that number and reso-
lution are distinct aspects of WM ability.

Having found strong support for a two-factor model of 
storage capacity, we examined which of these two aspects 
of storage capacity mediated the relationship with fluid 
intelligence. We carried out a confirmatory factor analysis 
of a model that included two independent factors for num-
ber and resolution and a third factor for fluid intelligence. 
The two measures of fluid intelligence loaded strongly on 
a common factor for fluid intelligence, or g (RAPM, M 5 
.83; CFT, M 5 .70). The fit between the overall model and 
the observed data was excellent [χ2(13,79) 5 10.845, p 5 
.6238, RMSEA 5 .00, CFI 5 1.0] (see Figure 3).

Moreover, the analysis demonstrated that the number 
and resolution factors had very different relationships 
with fluid intelligence. The number factor showed a 
strong positive correlation with fluid intelligence (r 5 .66, 
SE 5 .1), but the resolution factor showed no evidence 
of a reliable link with fluid intelligence (r 5 2.05, SE 5 
.13). Moreover, constraining the path from mnemonic res-

size 4 and 8 trials. When the raw correlations between WM capacity 
and intelligence were examined separately for each set size, a qualita-
tively similar pattern of correlations was observed (see note 5).

RESulTS

First, we employed an exploratory factor analysis to 
test the hypothesis that two separate factors account for 
the number and the resolution of the representations that 
could be maintained in visual WM (see Tables 1A and 1B 
for descriptive statistics and a full correlation matrix).

This analysis included five separate measures of change 
detection performance defined by the type of item probed 
and the size of the change between the sample and test stim-
ulus: (1) color k (color changes were always big); (2) big 
oval k (changes from ovals to rectangles); (3) small oval k 
(changes from one oval to another); (4) big rect k (changes 
from rectangles to ovals); and (5) small rect k (changes from 
one rectangle to the other). The two-factor hypothesis pre-
dicted that capacity estimates from the three large-change 
conditions (i.e., color k, big oval k, and big rect k) should 
load on a single factor related to the number of items that 
could be held in WM, whereas the two small-change condi-
tions (small oval k and small rect k) should load on a distinct 
factor related to the resolution or precision of the repre-
sentations stored in WM. The exploratory factor analysis 
confirmed that performance in the large- and small-change 
trials was best accounted for by a two-factor model. The 

Table 1B 
Correlations for Intelligence and Working Memory Capacity Measures
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RAPM –
CFT .58*** –
Color k .46*** .41*** –
Small oval k .06 .00 .22 –
Small rect k .04 .00 .13 .55*** –
Big oval k .44*** .34** .63*** .22 .13 –
Big rect k .42*** .36** .62*** .06 2.01 .70*** –

Note—RAPM, Raven’s Advanced Progressive Matrices; CFT, Cattel Culture Fair 
Test; Color k, k estimate from color conditions; Small oval k, k estimate from within-
category oval conditions; Small rect k, k estimate from within-category rectangle 
conditions; Big oval k, k estimate from cross-category oval conditions; Big rect k, k 
estimate from cross-category rectangle conditions. **p , .01. ***p , .001.

Table 1A 
descriptive Statistics for Working Memory Tasks and Intelligence Tasks

  M  SD  Range  Skewness  Kurtosis

RAPM 22.00 4.61 11.00 to 32.00 2.27 20.20
CFT 26.19 4.53 37.00 to 14.00 2.52 0.46
Color k 3.36 0.92 5.38 to 1.06 2.06 0.18
Small oval k 1.40 1.13 5.50 to 20.49 .83 1.13
Small rect k 1.16 1.05 4.66 to 21.17 .57 0.80
Big oval k 3.36 1.17 5.85 to 1.11 2.03 20.72
Big rect k 3.52 1.13 5.77 to 0.81 .00 20.42

Note—RAPM, Raven’s Advanced Progressive Matrices; CFT, Cattel Culture Fair 
Test; Color k, k estimate from color conditions; Small oval k, k estimate from 
within-category oval conditions; Small rect k, k estimate from within-category 
rectangle conditions; Big oval k, k estimate from cross-category oval conditions; 
Big rect k, k estimate from cross-category rectangle conditions.
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tween fluid intelligence and the two aspects of capacity 
(i.e., number and resolution), even a relatively large in-
crease in the number of observations would be unlikely to 
change the core conclusions of this study.

CoNCluSIoNS

The present work provides a new insight into the re-
lationship between WM capacity and fluid intelligence. 
Using a simple change detection procedure, we obtained 
strong support for a two-factor model of WM capacity, in 
which the number and resolution of the representations in 
WM are determined by distinct aspects of memory abil-
ity. This two-factor model enabled a straightforward test 
of which aspects of WM capacity mediate its link with 
fluid intelligence. The data were very clear. The number 
of representations that could be held in WM showed a ro-
bust correlation with fluid intelligence (r 5 .66), whereas 
mnemonic resolution showed no trace of a reliable link 
with fluid intelligence (r 5 2.05). Thus, the relationship 
between storage capacity in WM and fluid intelligence 
appears to be mediated solely by the maximum number of 
items that can be simultaneously stored in WM, rather than 
by the resolution or precision of those representations.

One important consequence of these results is that in 
designing and selecting WM tasks, researchers need to 
be mindful of the aspects that they want to have reflected 

olution to fluid intelligence to be 0 did not change the fit 
of the model [χ2

difference(1,79) 5 0.286, p 5 .59] (Table 3), 
strengthening the conclusion that mnemonic resolution 
was unrelated to fluid intelligence.

These results suggest that the relationship between WM 
capacity and fluid intelligence is driven solely by the abil-
ity to hold multiple discrete representations in WM and 
not by the clarity of those representations.4 Finally, al-
though 79 participants is lower than the number employed 
in many analyses of this kind, we note that the standard 
errors around the correlations between fluid intelligence 
and slots (.1) and resolution (.13) are small. Thus, given 
the very strong contrast between the links observed be-

Table 2 
Factor loadings of Working Memory Capacity Measures

   Number  Resolution  

Color k .841
Big oval k .877
Big rect k .897
Small oval k .869
Small rect k .883

Note—Color k, k estimate from color conditions; Small oval k, k esti-
mate from within-category oval conditions; Small rect k, k estimate from 
within-category rectangle conditions; Big oval k, k estimate from cross-
category oval conditions; Big rect k, k estimate from cross-category rect-
angle conditions. Loadings for the missing cells were all less than .15.

Figure 3. Results of the factor analysis. on the basis of the initial exploratory factor analysis, we generated three latent 
factors for g, working memory slots, and working memory resolution. The g factor was estimated from RAPM and CFT 
measures. The slots factor was generated from Color k, Big oval k, and Big Rect k. Finally, the resolution factor was 
generated from Small oval k and Small Rect k. The resulting model above was simultaneously tested. RAPM, Raven’s 
Advanced Progressive Matrices; CFT, Cattel Culture Fair Test; Color k, k estimate from color conditions; Small oval k, 
k estimate from within-category oval conditions; Small Rect k, k estimate from within-category rectangle conditions; Big 
oval k, k estimate from cross-category oval conditions; Big Rect k, k estimate from cross-category rectangle conditions.
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tering efficiency. Both the space and filtering accounts 
can account for individual differences in the number of 
relevant items represented in WM, but they posit distinct 
reasons for these differences.

In favor of the filtering account, a broad range of work 
has revealed strong correlations between WM capacity 
and filtering efficiency (Engle, 2002; Fukuda & Vogel, 
2009; McNab & Klingberg, 2008; Vogel et al., 2005). 
Indeed, a recent study (Cusack et al., 2009) suggested 
that the link between visual WM and intelligence may be 
best explained by selection efficacy during these memory 
tasks, rather than by the total amount of space in WM.5 
At the same time, other studies have highlighted cases in 
which group differences in memory performance seem 
better accounted for by variations in space than by fil-
tering (e.g., Cowan, Morey, AuBuchon, Zwilling, & Gil-
christ, 2010; Gold et al., 2006); these results suggest that 
it may be useful to maintain a distinction between space 
and filtering effects on WM capacity. So far, it is not clear 
whether only one of these accounts can explain all of the 
variation across individuals in the storage of relevant items 
or whether these abilities are separate but strongly covary-
ing aspects of memory function. Thus, an important goal 
for future work will be to determine whether space and 
filtering abilities account for unique variance in broad 
measures of intellectual function.
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Because these strategies are more effective for some subjects than for 
others, allowing such strategies to determine variance in the capacity 
measure may obscure real relationships between storage capacity and 
other measures.
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determines the upper bound for performance. The experimental ratio-
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the primary source of behavioral variance shifts from how many items 
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