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The fundamental unit of visual working memory (WM) has been debated for decades. WM could 1 

be object-based, such that capacity is set by the number of individuated objects, or feature-2 

based, such that capacity is determined by the total number of feature values stored. The 3 

present work examined whether object- or feature-based models would best explain how multi-4 

feature objects (i.e., color/orientation or color/shape) are encoded into visual WM. If maximum 5 

capacity is limited by the number of individuated objects, then above-chance performance 6 

should be restricted to the same number of items as in a single feature condition. By contrast, if 7 

the capacity is determined by independent storage resources for distinct features – without 8 

respect to the objects that contain those features – then successful storage of feature values 9 

could be distributed across a larger number of objects than when only a single feature is 10 

relevant. We conducted four experiments using a whole-report task in which subjects reported 11 

both features from every item in a six-item array. The crucial finding was that above-chance 12 

recall – for both single- and multi-featured objects – was restricted to the first three or four 13 

responses, while the later responses were best modeled as guesses. Thus, whole-report with 14 

multi-feature objects reveals a distribution of recalled features that indicates an object-based 15 

limit on working memory capacity. 16 

 17 

Public Significance Statement 18 

Whether features or objects are the fundamental unit of visual working memory has been 19 

debated for decades. Across four experiments, we show object-based and feature-based effects 20 

occurring in concert – more feature values are remembered when memory is organized as 21 

objects (known as an object-based benefit), but features can be forgotten independently. 22 

Critically, we show that accurate recall of multi-feature objects is concentrated to the first three 23 

objects reported, contrary to feature-based accounts in which separate features are 24 

independently encoded without respect to the objects that contain them. Thus, object-based 25 

encoding limits constrain storage in visual working memory.  26 
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Introduction 1 

Visual working memory (WM) is an online memory system responsible for maintaining 2 

information for ongoing cognition. Although its sharp capacity limitations are widely 3 

acknowledged, debate has persisted regarding the key limiting factors for storage in visual WM. 4 

On the one hand, object-based models propose that the limit is defined by a maximum number 5 

of objects that can be simultaneously held in visual WM (Luck & Vogel, 1997; Vogel et al., 6 

2001). On the other hand, feature-based models propose that capacity is determined by the 7 

total amount of featural information stored (Wheeler & Treisman, 2002; Wilken & Ma, 2004). 8 

There was a surge of research on this issue following the seminal paper by Luck and Vogel 9 

(1997). They observed change-detection performance was unaffected by the addition of multiple 10 

features to visual stimuli in a WM task. Luck and Vogel argued that WM capacity was limited by 11 

the number of discrete objects encoded into memory, and not by the number of relevant 12 

features within each item. In line with this view, subsequent work has confirmed that more 13 

features can be stored when they are packaged within a smaller number of objects – an effect 14 

referred to as the object-based benefit (Fougnie et al., 2012; Gao et al., 2011; Hardman & 15 

Cowan, 2015; Lin et al., 2021; Olson & Jiang, 2002; Vogel et al., 2001).  16 

However, it has also become clear that the perfect equivalence between WM 17 

performance with single- and multi-feature objects does not fully replicate. WM performance 18 

does decline as the number of features per item increases (Cowan et al., 2013; Hardman & 19 

Cowan, 2015; Markov et al., 2019; Oberauer & Eichenberger, 2013), although the size of the 20 

decline with multi-feature objects is far smaller than expected according to a pure feature-based 21 

model of capacity. For example, Hardman and Cowan (2015) in direct replications of Luck and 22 

Vogel (1997), consistently found that memory performance declined with additional feature load 23 

but noted that visual WM performance still depended on the total number of objects stored. 24 

Thus, it appears that WM performance cannot be predicted solely by the number of objects or 25 

features to be stored. 26 
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Here, we examined this issue by using a whole-report procedure in which recall for all 1 

features of every to-be-remembered item was tested during each trial (Adam et al., 2015, 2017; 2 

Hakim et al., 2020; Schor et al., 2020). The key virtue of this approach is that it provides a richer 3 

picture of the distribution of successfully stored features across the six items in the memory 4 

array. Observers in the Adam et al. (2015, 2017) studies saw displays of six colors or six 5 

orientations and were required to recall all colors or orientations. They showed a strong 6 

tendency to report the best-remembered items first, such that the first three responses showed 7 

clear evidence of target-related information, while the final three responses were best modeled 8 

as guesses (specifically, uniform distributions that were random with respect to the recalled 9 

items). Thus, these findings provided clear evidence that WM storage was restricted to about 3-10 

4 items. In the present work, our goal was to leverage this whole-report procedure to examine 11 

the distribution of successfully stored feature values when there were multiple relevant features 12 

for each item. The key question was whether above-chance storage of relevant features would 13 

be constrained to a similar number of items with single- and multi-feature conditions, as 14 

predicted by object-based models of WM capacity.  15 

We examined three models of WM capacity limits: a strong object model, an 16 

independent features model, and an object-based pointer model with feature loss. The strong 17 

object model presumes that capacity limits are determined entirely by the number of objects 18 

stored, and that all features of the stored objects are retained without loss (e.g.,Luck and Vogel, 19 

1997; Olson & Jiang, 2002; Sone et al., 2021). The independent features model, by contrast, 20 

asserts that WM capacity is determined only by the total amount of feature information that is 21 

stored, without respect to the number of objects containing those features (e.g. Fougnie & 22 

Alvarez, 2011; Shin & Ma, 2017; Wheeler & Treisman, 2002). Finally, the object-based pointer 23 

model presumes that WM storage is constrained to a fixed number of objects, but also allows 24 

for independent forgetting of the features within the stored objects (e.g. Brady et al., 2011; 25 

Cowan et al., 2013; Markov et al., 2019; Oberauer & Eichenberger, 2013). To anticipate the 26 
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results, we replicated past findings that subjects had a strong tendency to report the best 1 

remembered items first, such that above chance responses were restricted to the first three or 2 

four responses across the trial. The key finding was that this empirical pattern was observed for 3 

both single and multi-featured objects, suggesting that a similar item limit constrained 4 

performance for these stimuli. Thus, observers were not able to achieve above-chance 5 

performance with a larger number of multi-featured objects, posing a challenge to models that 6 

assert independent resources for the storage of distinct visual features. In line with this 7 

conclusion, formal model comparisons showed that the data were best fit by the object-based 8 

pointer model, providing evidence for object-based encoding into WM. Thus, our findings 9 

suggest that WM storage is limited by the number of objects stored, but features may be lost 10 

independently from those objects (Li et al., 2022; Sone et al., 2021).  11 

Experiment 1 Methods 12 

Transparency and Openness 13 

All experimental materials – task code, analysis code and experimental data – can be 14 

accessed at https://osf.io/wjr7u/ with DOI 10.17605/OSF.IO/WJR7U. Data was analyzed using 15 

MATLAB 2019a (The MathWorks, Natick, MA) using custom analysis scripts. The study designs 16 

and their analysis were not pre-registered. 17 

Apparatus 18 

Stimuli were generated using MATLAB 2019a (The MathWorks, Natick, MA) and 19 

PsychToolbox (Brainard, 1997; Pelli, 1997), and presented on a 24-inch BenQ XL2430T LCD 20 

monitor with spatial resolution set to 1920 ✕ 1080 and refresh rate set to 120 Hz. Participants 21 

were seated in a dark room with a viewing distance of approximately 80 cm. 22 

Stimuli 23 

Participants were shown displays containing six circular items with a diameter of 2.5° of 24 

visual angle in size. Items were centered within a region at least 2.5° of visual angle but less 25 

https://osf.io/wjr7u/
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than 10° to either side of the central fixation point, with the constraint that three items were on 1 

both sides of the screen and items were at least 5° away from each other (see Figure 1).  2 

 3 
Figure 1. An example stimulus array with the constraints for item locations overlayed. Stimulus 4 
arrays always contained six items of 2.5° of visual angle in size, with three items to either side of 5 
the fixation point. Locations were randomly sampled from a region with a minimum distance 6 
from the fixation point was 2.5° of visual angle and the maximum distance was 10° of visual 7 
angle. The height of this region was 12° of visual angle. The items were separated by a 8 
minimum of 5°. 9 

 10 
In Experiment 1, the displays were either colored circles, clock faces or colored clock 11 

faces (the conjunction of the single-feature conditions, see Figure 2). There were eight possible 12 

colors: red (RGB 255, 0, 0), green (0, 255, 0), blue (0, 0, 255), yellow (255, 255, 0), magenta 13 

(255, 0 , 255), cyan (0, 255, 255), orange (255, 128, 0), and purple (128, 0, 128). There were 14 

eight possible orientations (0°, 45°, 90°, 135°, 180°, 225°, 270° and 315° from vertical). In the 15 

orientation-only condition, the stimuli were presented in white. Only one of each color and 16 

orientation were randomly sampled and displayed in the memory array on each trial (see Figure 17 

2 for examples). 18 
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 1 

Figure 2. An example of stimulus arrays from each condition in Experiment 1 (orientation only, 2 
color only, and conjunction). 3 
 4 
Procedure 5 

The experiment was a discrete whole-report visual working memory task (see Figure 3 6 

for the general trial procedure). Each trial commenced with a fixation point displayed for 1000 7 

msec before the memory display was shown for 500 msec. After a retention period of 1000 8 

msec, placeholder circles appeared at the locations of each memory item on that trial. 9 

Participants were instructed to recreate the entire memory display using a click-and-drag 10 

response at each location – to respond, participants clicked within the placeholder they wished 11 

to respond to, and while holding down the mouse button, dragged outside the placeholder circle 12 

to select their response. In the color only condition, a wheel containing all possible colors 13 

appeared around the clicked location, and the observers moved their mouse cursor, a crosshair, 14 

to a set radius to select their desired color. In the orientation only condition, the observer 15 

dragged their mouse cursor in the direction of their desired response. In the conjunction 16 

condition, participants responded on both dimensions simultaneously – the observer would drag 17 

their mouse cursor in the direction of their desired orientation response, as well as to the color 18 

wheel of their desired color response. A preview of their selected response would appear within 19 

the placeholder circle, updating as they moved the cursor, allowing subjects to confirm their 20 

memory. Releasing the mouse button submitted the response. Participants were not allowed to 21 

change their responses once submitted, and could respond with the same color or orientation at 22 

multiple locations. The selected responses remained on screen until all items had a submitted 23 

response, after which the next trial started after a blank screen with an inter-trial interval of 1 24 
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second. Participants were given 10 practice trials of each condition for practice prior to the 1 

experiment. 2 

 3 

 4 

Figure 3. The general trial procedure. Each trial started a fixation point at the center of the 5 
screen displayed for 1000 msec. A memory array would then appear for 500 msec before a 6 
blank retention period of 1000 msec. The response screen starts with outlines of the locations of 7 
the memory items. Participants clicked within a location, and while holding down the button, 8 
dragged in a direction to indicate the orientation and/or dragged to a certain radius to indicate 9 

Fixation
1000 msec

Memory
500 msec

Retention
1000 msec

Recall
Until response
made to all 
items



OBJECT-BASED ENCODING IN VWM 

 10 

the color, letting go to submit their response at that location. A preview was presented at the 1 
clicked location as they moved the cursor so the participant could confirm their response. 2 
Responded items remained on the screen until all responses were submitted.  3 
 4 

Participants completed the experiment in two sessions, with the second session on a 5 

separate day but within 8 days of the first session. In each session, the participants completed 6 

150 trials of each condition (color only, orientation only and conjunction), for a total of 900 trials 7 

across both sessions and all conditions. Participants were required to take at least a 30-second 8 

break every 50 trials. Condition order was counterbalanced across all participants. The duration 9 

of each session was approximately 2 to 2.5 hours.  10 

Participants 11 

Thirty participants (21 females and 9 males) between 18 and 32 years of age (mean age 12 

= 23.6 years) were recruited from the local University of Chicago community and received 13 

monetary compensation for their time across two sessions ($10 per hour, and a $10 bonus for 14 

completion of both sessions). Participants were asked for their gender and age by the 15 

experimenter, who recorded the answer in a free-response box on-screen. All participants 16 

reported normal or corrected-to-normal visual acuity, normal color vision and gave informed 17 

consent. Procedures were approved by the University of Chicago Institutional Review Board. 18 

Analysis 19 

Working memory performance was quantified as the number of correct responses on 20 

each trial, in each condition. To describe an individual’s performance, we calculated the mean 21 

number of correct responses across trials in each condition (color only, orientation only, and 22 

conjunction). We also fit a computational model (see the partial drop model from Hakim et al., 23 

2020; also Schor et al., 2020, 2023) to estimate the maximal working memory capacity (Kmax) 24 

and an attentional control factor (alpha) parameter for each individual (see "the object-based 25 

pointer model” for further details). The critical analysis examined the distribution of correctly 26 

recalled features across all items in the conjunction condition. To compare the three competing 27 
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models, we conducted formal model comparisons on each observer’s recall performance across 1 

the six responses in the conjunction condition.  2 

Modeling of Accuracy Across Responses in the Conjunction Condition 3 

The central goal of this experiment was to examine how accurately recalled features 4 

were distributed across items, enabling a test of object-based versus feature-based models of 5 

WM capacity. We conducted formal model comparisons of three models: the strong object 6 

model, the independent features model and the object-based pointer model (Figure 4). The 7 

strong object model assumes that people store a discrete number of objects in working memory, 8 

with perfect retention of all relevant features. There will be no representations for the remaining 9 

items in the memory array, resulting in chance performance due to guessing (“all-or-nothing”). 10 

The independent features model assumes that a limited number of feature values are stored, 11 

without any constraint on the number of objects containing those features. The object-based 12 

pointer model assumes that storage of multiple features is constrained to a maximum number of 13 

objects, while allowing for independent dropping (or encoding failure) of the features within 14 

those objects. Examples of the pattern of behavior predicted by each model can be seen in 15 

Figure 4. Note that these predictions are based on the assumption that observers will report the 16 

best remembered items first, as observed in past work using whole report procedures (Adam et 17 

al., 2015, 2017; Ngiam et al., 2022). 18 

19 
Figure 4. Example predictions for the pattern of responses for the compared models. (a) The 20 
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strong object model predicts memory representations are all-or-nothing. Depicted in this 1 
example is memory for 3 objects, and chance guessing for the remaining three responses. (b) 2 
The object-based pointer model predicts that working memory is defined by object-based 3 
encoding but may undergo feature loss. The rate of feature loss is independent for the separate 4 
feature dimensions. (c) The independent features model assumes success of encoding a 5 
feature into working memory is independent to the other feature of the object, and so working 6 
memory is distributed across objects. The rate of successful encoding may vary between the 7 
two feature dimensions. 8 

 9 
We found the best-fitting parameter estimates for each of the three models depicted in 10 

Figure 4 using likelihood-maximization procedures. We generated a probability distribution of 11 

recalling neither, just one of either feature, or both features of an object for each response (1st 12 

to 6th) according to each of the three models. We then determined the parameter estimates for 13 

each model that maximizes the likelihood for each individual participant’s observed accuracy 14 

data.  15 

The strong object model 16 

The strong object model has one parameter, the number of objects remembered (K ∈ [0, 17 

6] with steps of 1). If the ordinal position of the response is less than or equal to this, the subject 18 

is assumed to correctly recall both features. For later responses, the object is assumed to make 19 

an informed guess, where the probability of the possible responses (both features correct, only 20 

one or the other feature correct, or both incorrect) is straightforwardly modeled with a binomial 21 

probability mass function. This is formulated as: 22 

𝑓(𝑥, 𝑖) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑖 ≤ 𝐾,

⎩
⎨

⎧
𝑝(𝑏𝑜𝑡ℎ	𝑐𝑜𝑟𝑟𝑒𝑐𝑡) = 1
𝑝(𝐹!	𝑐𝑜𝑟𝑟𝑒𝑐𝑡) = 0
𝑝(𝐹"	𝑐𝑜𝑟𝑟𝑒𝑐𝑡) = 0

𝑝(𝑏𝑜𝑡ℎ	𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡) = 0

𝑖 > 𝐾,

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑝(𝑏𝑜𝑡ℎ	𝑐𝑜𝑟𝑟𝑒𝑐𝑡) = = !

#$%
>
"

𝑝(𝑜𝑛𝑙𝑦	𝐹!𝑐𝑜𝑟𝑟𝑒𝑐𝑡) =
&$%

(#$%)!

𝑝(𝑜𝑛𝑙𝑦	𝐹"	𝑐𝑜𝑟𝑟𝑒𝑐𝑡) =
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>
"

, 23 

where x is the type of response made, i is the ordinal position of the response, F1 is the 24 

first feature dimension and F2 is the second feature dimension. For each individual, we 25 
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determined the best-fitting strong object model by calculating the maximum log-likelihood for 1 

their pattern of responses with each possible parameter value (K). The probability distribution 2 

when K equals 3 is shown as an example in Figure 4a). 3 

The object-based pointer model 4 

The object-based pointer model has four free parameters, the maximum number of 5 

objects remembered (Kmax ∈ [1,6] with a step size of 1), the robustness of attentional control (α 6 

∈ [0,10]), and the probability of feature loss in each dimension (ploss_F1; ploss_F2). To determine the 7 

best-fitting parameter values for each individual, we used approximate Bayesian optimization to 8 

search for likely values that minimized the negative log-likelihood. To calculate the negative log-9 

likelihood, we generated probability distributions at the specific combinations of parameter 10 

values via simulation (i.e. synthetic probability distributions). We simulated the number of 11 

objects successfully encoded based on a beta-binomial distribution previously demonstrated to 12 

explain performance on a working memory whole-report task (see partial drop model in Hakim 13 

et al. (2020) and also in Schor et al. (2020, 2023)). The beta-binomial distribution estimates the 14 

probability of successfully encoding an item from 0 to an individual’s maximum capacity, Kmax. 15 

The α parameter of the beta function, B(α, β), shapes the graded distribution of the number of 16 

successfully stored items, capped by Kmax – the higher the α parameter value, the more often 17 

that Kmax (and close to Kmax) is achieved. This parameter has been shown to capture the 18 

fluctuations in attention in a working memory task following short and long retention intervals 19 

(Hakim et al., 2020). We then simulated the independent loss of each feature from each of the 20 

successfully encoded objects, as previously observed by Fougnie and Alvarez (2011). For the 21 

two feature dimensions, we estimated the number of times that a feature from a dimension was 22 

dropped from a successfully encoded object with a binomial distribution based on the probability 23 

of feature loss in that dimension (ploss_F1 , ploss_F2 ) as a free parameter. It is important to note 24 

that these probabilities can vary for the two feature dimensions – that one feature may be lost 25 

more often than the other feature: 26 
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𝑓(𝑥; 𝑛)) = 𝑥~𝐵𝑖𝑛𝑜𝑚E𝑛) , 𝑝*+,,"#F, 1 

where x is the number of drops, n is the number of objects successfully encoded on the 2 

ith trial, and ploss_F1 is the probability of a feature from that dimension being lost. Following 3 

failures of encoding and independent feature loss, the subject is assumed to make an informed 4 

guess by choosing from the remaining feature values that were not successfully encoded. 5 

Observers are assumed to order responses based on the number of features they accurately 6 

recalled, as previously observed by Adam et al. (2017) and Ngiam et al. (2022). The synthetic 7 

probability distribution was estimated by taking the average distribution across 100 iterations 8 

simulating 500 trials. 9 

We conducted maximum likelihood estimation by using the approximate Bayesian 10 

optimization algorithm in MATLAB (bayesopt). Bayesian optimization adapts the search by 11 

modeling the objective function with a Gaussian process model (in this case, the negative log-12 

likelihood function across the four-parameter space). It can then balance testing underexplored 13 

areas in the parameter space and the parameter estimates that are more likely to generate the 14 

objective minimum. As we estimated the negative log-likelihood using synthetic probability 15 

distributions, the noise level of the objective function (the negative log-likelihood calculation) 16 

was also estimated during the minimization search. The approximate Bayesian optimization 17 

process was fixed to end after 100 evaluations. 18 

The object-based pointer model is very similar in application to a model proposed by 19 

Cowan et al. (2013), whereby a constant number of objects is held in WM, and within each 20 

remembered object, one feature is stored with certainty but the success of storing remaining 21 

additional features is probabilistic (see Hardman & Cowan, 2015; Oberauer & Eichenberger, 22 

2013). Here, we have extended these mechanisms to generate probability distributions on the 23 

whole-report task with conjunction stimuli. An example of a probability distribution can be seen 24 

in Figure 4b). 25 

 26 
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The independent features model 1 

The independent features model has two free parameters, the probability of successful 2 

encoding for each feature dimension (pF1; pF2). We generated probability distributions through 3 

simulation (a synthetic probability distribution) over the 2D grid space for both parameters (pF1 ∈ 4 

[0.01,1] and pF2 ∈ [0.01,1] with a step size of 0.01. To do this, we conducted 100 iterations 5 

simulating 500 whole-report trials and averaged across the iterations to generate the final 6 

probability distribution. On each trial, we simulated the successful encoding of each feature 7 

within each item using a Bernoulli distribution for each of the probability parameters for the two 8 

feature dimensions: 9 

𝑓(𝑥, 𝑖)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝-!), 10 

where x is whether the feature was successfully encoded for the ith item on the trial, and 11 

pF1 is the probability of successful encoding for that feature dimension. Like the object-based 12 

pointer model, on items where the encoding failed, we assumed informed guessing by 13 

simulating responses being chosen from the remaining possible feature values. Observers were 14 

assumed to order responses based on the number of features they accurately recalled, as 15 

previously observed by Adam et al. (2017) and Ngiam et al. (2022). An example of a distribution 16 

can be seen in Figure 4c).  17 

To facilitate model comparison across the models with different numbers of estimated 18 

parameters, we converted the likelihood values to Bayes Information Criterion (BIC) values, 19 

which applies a penalty for additional model parameters (Schwarz, 1978). We used the lowest 20 

BIC value to select the best-fitting model (Kass & Raftery, 1995). 21 

 22 

Experiment 1 Results 23 

Accuracy Across Conditions 24 

In the color-only condition, participants responded correctly to 3.21 items (SD = 0.74) on 25 

average per trial. In the orientation-only condition, the average number of orientations correctly 26 
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reported per trial was 2.79 items (SD = 0.44). In the conjunction condition, the average number 1 

of correctly reported items (both features of the conjunction reported accurately) per trial was 2 

1.62 items (SD = 0.38). The average number of accurately recalled features per trial in the 3 

conjunction condition was 4.94 features (SD = 0.68). The frequency distribution for number of 4 

correct responses for each condition can be seen in Figure 5. 5 

In the single-feature conditions, we also fit a computational model to each individual’s 6 

distribution of correct responses using maximum likelihood procedures, to estimate the maximal 7 

working memory capacity (Kmax) and attentional control factor (alpha) (Hakim et al., 2020; 8 

Schor et al., 2020, 2023). In the color-only condition, mean Kmax was 3.57 items (SD = 1.04) 9 

and mean alpha was 3.29 (SD = 1.93). In the orientation-only condition, mean Kmax was 2.70 10 

items (SD = 0.47) and mean alpha was 4.94 (SD = 2.95). 11 
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 1 

Figure 5. The average frequency histogram of the number of correct responses on each trial for 2 
(a) the color-only condition, (b) the orientation-only condition and (c) the conjunction condition of 3 
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Experiment 1. For the conjunction condition, a correct response was defined as reporting both 1 
features correctly. All error bars depict ±1 standard error of the mean. 2 

 3 

Accuracy Across Responses in the Conjunction Condition 4 

We then examined the distribution of accuracy across responses in the conjunction 5 

condition. Recall performance worsened across responses (Figure 6a). In the first three 6 

responses, participants reported at least one feature accurately more often than not. In the last 7 

three responses, however, the pattern of responding was near-identical and resembled chance 8 

performance. That is, accurate recall was constrained to the first three objects reported. We 9 

conducted formal model comparisons to verify our visual inspection of this empirical pattern.  10 
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Figure 6. a) Average distribution of recall accuracy across responses observed across 1 
participants in Experiment 1. Each bar indicates a possible type of response: both features of 2 
the item correct (blue), only the color of the item correct (orange), only the orientation of the item 3 
correct (yellow), or both features reported incorrectly (purple). The error bars indicate ±1 4 
standard error of the mean. The aggregated distribution generated from the best-fitting 5 
parameters for each participant b) for the object-based pointer model and c) for the independent 6 
features model are shown in the grey panels. The object-based pointer model was the best-7 
fitting for all participants in Experiment 1. 8 

 9 

 10 
Model Comparison Results 11 

For all 30 participants, the best-fitting model was the object-based pointer model with 12 

substantial evidence (Figure 6b) (mean ΔBIC to the strong object model = 5910.8 and mean 13 

ΔBIC to the independent features model = 494.10, see Figure 6c). Taking the best-fitting 14 

parameter estimates of the object-based pointer model for each individual, the average number 15 

of ‘pointers’ (Kmax) was 3.43 (SD = 0.97), the average alpha parameter was 6.62 (SD = 2.53), 16 

the probability of feature loss for color was 0.27 (SD = 0.14) and the probability of feature loss 17 

for orientation was 0.41 (SD = 0.20). Of note, the Kmax parameter estimate (the maximal 18 

number of items stored) was comparable between the single-feature and conjunction conditions. 19 

Experiment 1 Discussion 20 

We replicated past work showing that there is a consistent cost for WM performance 21 

with conjunction compared to single feature items (Hardman & Cowan, 2015; Markov et al., 22 

2019; Olson & Jiang, 2002). We also observed an object-based benefit (Fougnie et al., 2012) 23 

whereby more features were accurately recalled in the conjunction condition (~5 features) 24 

compared to the single-feature conditions (~3 features). The key novel contribution of this work, 25 

however, was to leverage the whole report procedure to examine how the recalled features 26 

were distributed across items in the single- and multi-feature object conditions. If WM capacity is 27 

limited by the number of objects stored, then accurate recall with multi-feature objects should be 28 

constrained to the same number of items as with single-feature objects. Alternatively, if there 29 

are independent resources for storing distinct features, without regard for the objects that 30 
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contain them, then correctly recalled features could be distributed across a larger number of 1 

objects in the multi-feature compared to the single-feature condition. 2 

Recall performance worsened across the responses, as in past work (Adam et al., 2017; 3 

Ngiam et al., 2022). Accurate recall was restricted to early responses, whereas the later 4 

responses resembled chance performance. Our formal model comparison confirmed that the 5 

recall of these features was concentrated to within 3 items rather than distributed across a 6 

larger number of items in the display. Critically, this was the case for both single- and multi-7 

feature objects. For all 30 participants, the object-based pointer model provided a better fit to 8 

the data than the independent features model, which assumes no object-based constraints on 9 

the distribution of featural memory. Note that the object-based model also outperformed the 10 

strong object model, suggesting that object-based storage is not lossless, as features are lost 11 

independently from each object memory representation. Thus, our findings indicate that WM 12 

storage is constrained by the number of objects stored.  13 

Experiment 2 14 

As recall accuracy was significantly better for color than orientation in the single-feature 15 

condition, we were concerned VWM accuracy could have been inflated due to color grouping 16 

strategies. Indeed, debriefing of Experiment 1 participants revealed that some made active use 17 

of grouping strategies based on “warm” and cool” color categories. This motivated a replication 18 

of Experiment 1 with a shorter presentation time of the memory array (150 msec in this 19 

experiment compared to 500 msec in Experiment 1) to reduce the opportunity for these 20 

strategies. 21 

Experiment 2 Methods 22 

Participants 23 

30 observers (14 females and 16 males) between 19 and 35 years of age (mean age = 24 

23.9) who did not complete the previous experiment received the same monetary compensation 25 
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for their participation across two sessions. Each session took approximately two hours and the 1 

second session was completed on a separate day within 11 days of the first session. 2 

Procedure 3 

The procedure was identical to Experiment 1 except that the memory array was 4 

presented for 150 msec rather than 500 msec. 5 

Experiment 2 Results 6 

Accuracy 7 

The mean number of colors recalled per trial was 2.94 items (SD = 0.64). The mean 8 

number of orientations recalled per trial was 2.45 items (SD = 0.45). The mean number of 9 

conjunctions correctly reported per trial was 1.38 items (SD = 0.42), and the mean number of 10 

features in the conjunction condition correctly reported was 4.52 features (SD = 0.83). The 11 

aggregated distribution of correct responses for each condition is displayed in Figure 7.  12 

We fit a computational model to each individual’s distribution of correct responses to 13 

estimate their maximal capacity (Kmax) and their attentional control (alpha). In the color-only 14 

condition, mean Kmax was 3.17 (SD = 0.79) and mean alpha was 3.17 (SD = 1.81). In the 15 

orientation-only condition mean Kmax was 2.40 (SD = 0.56) and mean alpha was 3.92 (SD = 16 

2.60). 17 
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Figure 7. The average frequency histogram of the number of correct responses on each trial for 1 
(a) the color-only condition, (b) the orientation-only condition and (c) the conjunction condition of 2 
Experiment 2. All error bars depict ±1 standard error of the mean. 3 
 4 
Accuracy Across Responses in the Conjunction Condition 5 

The pattern of results was very similar to Experiment 1 – recall accuracy worsened 6 

across responses (see Figure 8a). Again, above-chance recall was constrained to the first three 7 

responses, whereas the last three responses resembled chance performance. Model 8 

comparison using likelihood-maximization procedures revealed that for all 30 participants, the 9 

best-fitting model was the object-based pointer model with substantial evidence (see Figure 8b) 10 

(mean ΔBIC to the strong object model = 6617.7 and mean ΔBIC to the independent features 11 

model = 415.31, see Figure 8c). Taking the best-fitting parameter estimates of the object-based 12 

pointer model for each individual, the average number of ‘pointers’ (Kmax) was 3.23 (SD = 13 

1.19), the average alpha parameter was 6.57 (SD = 2.48), the probability of feature loss for 14 

color was 0.31 (SD = 0.14), and the probability of feature loss for orientation was 0.47 (SD = 15 

0.19). Again, estimates of Kmax from the conjunction condition were comparable to the 16 

estimates in the single-feature conditions. 17 
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Figure 8. a) Memory recall for conjunctions of color and orientation on each response in 1 
Experiment 2, averaged across participants. Error bars represent ±1 standard error of the mean. 2 
 Displayed in the grey panel is the average of the recall distributions generated from the best-3 
fitting parameters to each individual participant’s data for the b) object-based pointer model and 4 
for the c) independent features model. The object-based pointer model was best-fitting for all 30 5 
participants.  6 
 7 
Experiment 2 Discussion 8 

Like in Experiment 1, we observed that fewer conjunctions were remembered overall 9 

compared to single-feature items. Again, we observed the object-based benefit whereby more 10 

features were recalled overall in the conjunction condition (4.52 features) compared to the 11 

single-feature conditions (2.94 colors and 2.45 angles). Most notably, we replicated the key 12 

finding that the distribution of accurate recall in the conjunction condition was again 13 

concentrated within the first three responses, as confirmed by formal model comparisons – the 14 

object-based pointer model was best-fitting for all 30 observers compared to the strong object 15 

model and the independent features model. Therefore, it appears that while object-based 16 

storage allows more feature values to be stored from multi-featured compared to single-feature 17 

objects, there is probabilistic loss (or failure to encode) the features within each object.  18 

Experiment 3 19 

In Experiment 3, we directly replicated the conjunction condition of Experiment 1, except 20 

that we used another set of stimuli typically used in the literature to examine memory for 21 

conjunctions of angle and color – colored triangles. This would allow us to better compare 22 

results to previous experiments (Fougnie & Alvarez, 2011). 23 

Experiment 3 Methods 24 

The method for Experiment 3 was identical to Experiment 1 except for the following: 25 

Participants 26 

30 participants (21 females and 9 males) between the ages of 18 and 35 years (mean 27 

age = 24.47) completed this experiment. The participants had not completed any of the previous 28 
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experiments. Participants completed all trials in a single session, receiving the same rate of 1 

monetary compensation. The experimental session took approximately 2 hours to complete. 2 

Stimuli 3 

Instead of the colored clock faces, we presented colored triangles – another stimulus 4 

that has been used to examine memory for the conjunction of color and angle. The triangles had 5 

internal angles of 35°, 75° and 75° with side length of 2.5°.  6 

Procedure 7 

This experiment did not include the single-feature conditions – participants completed 8 

300 trials of the conjunction condition only. 9 

Experiment 3 Results 10 

Accuracy 11 

The mean number of conjunctions correctly reported per trial was 1.47 items (SD = 12 

0.44), and the mean number of features correctly reported per trial was 5.11 (SD = 0.65) (see 13 

Figure 9 for the aggregate distribution).  14 

 15 

 16 

Figure 9. The average accuracy distribution of conjunctions remembered in Experiment 3. All 17 
error bars depict ±1 standard error of the mean. 18 

 19 
Model Comparison 20 
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We observed the same pattern of results in Experiment 1 and 2 in the conjunction 1 

condition across responses (see Figure 10a). For all 30 participants, the best-fitting model was 2 

the object-based pointer model (see Figure 10b) (mean ΔBIC to the strong object model = 3 

5997.4 and mean ΔBIC to the independent features model = 326.33, see Figure 10c). Taking 4 

the best-fitting parameters of the object-based pointer model for each individual, the mean 5 

number of ‘pointers’ (Kmax) was 4.30 (SD = 1.15), the mean alpha parameter was 6.16 (SD = 6 

2.80), the mean probability of color loss was 0.29 (SD = 0.17) and the mean probability of 7 

feature loss for orientation was 0.58 (SD = 0.23).  8 
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Figure 10. Average memory recall accuracy for each response for Experiment 3. Model-fitting 1 
results are presented in the grey panels: b) Average distribution of recall accuracy generated by 2 
the best-fitting object-based pointer model for each individual. c) Average distribution of the 3 
recall accuracy distribution generated by the best-fitting independent features model for each 4 
individual. The object-based pointer model was the best-fitting for all 30 participants’ data. The 5 
error bars depict ±1 standard error of the mean. 6 
 7 

Experiment 3 Discussion 8 

We replicated the results from the conjunction condition of our earlier experiments – 9 

accurate recall was concentrated to the first three responses with chance performance for the 10 

remaining three responses, and that the object-based pointer model better fit every participants’ 11 

data compared to the strong object model and the independent features model. The improved 12 

recall accuracy for color over orientation appears to be widened with colored isosceles triangles, 13 

compared to the colored clock faces from Experiment 1 and Experiment 2. Our impression is 14 

that the orientations were more difficult to discriminate with these stimuli. 15 

Experiment 4 16 

Having consistently observed a recall advantage for color over orientation across the 17 

first three experiments, we sought to replicate the previous experiments while attempting to 18 

equate memory performance for the different feature dimensions. We used shapes rather than 19 

orientations and selected a new set of colors. For both features, our aim was to maximize the 20 

discriminability of every possible pair of values for each set. In addition to providing a fourth 21 

replication of our primary empirical pattern, Experiment 4 also served to generalize our findings 22 

to a different pair of features. 23 

Experiment 4 Methods 24 

The method for Experiment 4 was identical to Experiment 1 except for the following: 25 

Participants 26 

30 participants (18 females, 2 non-binary and 10 males) between the ages of 19 and 33 27 

years (mean age = 24.50) completed this experiment. These participants had not completed 28 
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any of the previous experiments. Each session took approximately two and a half hours and the 1 

second session was completed on a separate day within 7 days of the first session. 2 

Stimuli 3 

We selected a set of colors and shapes with the aim of maximizing discriminability 4 

between all possible pairs of items and thus, equating the memory performance across the 5 

feature dimensions. The colors (RGB values in brackets) were red [175,0,0], green [0,140,0], 6 

blue [0,0,255], yellow [255,255,0], magenta [255,0,255], white [255,255,255], orange 7 

[255,128,0] and black [0,0,0]. The shapes used can be seen in Figure 11.   8 

 9 

 10 

Figure 11. The discrete shapes used as stimuli in Experiment 4.  11 

Procedure 12 

The response screen for the shape-only and conjunction conditions included a cue of 13 

each shape around the perimeter of the response circle to indicate to the participant which 14 

direction to drag their cursor for their intended shape responses. Participants completed 5 15 

practice trials of each condition (color-only, shape-only and the conjunction condition) to get 16 

used to the response interface and the experimental task. 17 
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Experiment 4 Results 1 

Accuracy 2 

In the single-feature conditions, the mean number of correctly recalled colors per trial 3 

was 3.61 items (SD = 0.75) and the mean number of correctly recalled shapes per trial was 3.39 4 

items (SD = 0.64). The mean number of correctly recalled conjunctions (both shape and color 5 

features in the item) was 1.92 items (SD = 0.43), and the mean number of features recalled per 6 

trial of the conjunction condition was 5.34 features (SD = 0.85). The aggregated frequency 7 

distributions of correct responses for each condition are displayed in Figure 12. 8 

We fit a computational model to the frequency distribution of correct responses in the 9 

single-feature conditions for each individual to estimate their maximal working memory capacity 10 

(Kmax) and attentional control (alpha). In the color-only condition, mean Kmax was 4.00 items 11 

(SD = 0.98) and mean alpha was 4.03 (SD = 2.44). In the shape-only condition, mean Kmax 12 

was 3.50 items (SD = 0.94) and mean alpha was 4.65 (SD = 2.56). 13 
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Figure 12. The average frequency distribution of the number of correct responses in the (a) 1 
color-only condition (b) shape-only condition and (c) conjunction condition of Experiment 4. All 2 
error bars depict ±1 standard error of the mean.  3 

 4 

Model Comparison 5 

We observed the same pattern of results across responses in the conjunction condition 6 

as in the previous experiments – accurate recall was constrained to the first three responses, 7 

and the last three responses resembled chance performance (see Figure 13a). Of note, there 8 

did not appear to be a substantial advantage for one feature dimension over the other – color 9 

and shape were well-matched in recall accuracy across the responses. For a fourth time, the 10 

object-based pointer model was the best fitting model for all 30 participants (see Figure 13b) 11 

(mean ΔBIC to the strong object model = 5318.0 and mean ΔBIC to the independent feature 12 

model = 659.55 (see Figure 13c)). Taking the best-fitting parameters of the object-based pointer 13 

model for each individual, the mean number of ‘pointers’ (Kmax) was 3.20  (SD = 0.89), mean 14 

alpha was 6.10 (SD = 2.46), the mean probability of color loss was 0.24 (SD = 0.13) and the 15 

mean probability of shape loss was 0.23 (SD = 0.12).  16 
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Figure 13. a) The observed average memory recall accuracy for each response for Experiment 1 
4. Model-fitting results are presented in the grey panels: b) Average of the recall accuracy 2 
distribution generated by the best-fitting object-based pointer model for each individual. c) 3 
Average distribution of the recall accuracy distribution generated by the best-fitting independent 4 
features model for each individual. The error bars depict ±1 standard error of the mean. 5 
 6 

Experiment 4 Discussion 7 

In Experiment 4, we employed highly discriminable colors and shapes to equate memory 8 

performance across the stored features. In addition, this study generalized the findings from 9 

Experiments 1-3 to a new pair of features. As in the previous experiments, less conjunctions 10 

were perfectly remembered compared to the single-feature items. But again, we observed an 11 

object-based benefit – more features were accurately recalled in the conjunction condition (~5 12 

features) compared to the single-feature conditions (~3 features). Notably, recall for color and 13 

shape appeared to be comparable in the single-feature conditions, as well as across responses 14 

in the conjunction condition. For a fourth time, we replicated the key finding from our earlier 15 

experiments – accurate recall was constrained to the first three responses, with guessing 16 

performance in later responses of the whole-report. This was confirmed by formal model 17 

comparisons that indicated that every participant’s data was better fit by the object-based 18 

pointer model compared to the strong object model and the independent features model. 19 

General Discussion 20 

There has been persistent debate about whether capacity limits of visual WM are object-21 

based or feature-based. The primary empirical approach within this debate has been to 22 

compare WM performance with single- and multi-feature stimuli, observing whether adding 23 

features to the memorized items impairs performance, as predicted by feature-based models of 24 

capacity. Although it is clear that adding additional features yields a measurable decline (e.g., 25 

Hardman & Cowan, 2015; Olson & Jiang, 2002), the effect is much smaller than it should be 26 

according to a pure feature load account of WM capacity. Instead, observers are able to store a 27 

substantially larger number of feature values when they are presented within multi-feature 28 
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stimuli compared to single feature stimuli. In the present work, we replicated this well-known 1 

object-based benefit (Fougnie et al., 2012), disconfirming pure feature-based models of WM 2 

capacity.  3 

The key finding in this study was made possible by our use of the whole-report 4 

procedure in which all relevant features of each item were reported during each trial. This 5 

provided a clear picture of the distribution of the stored feature values across the six items in the 6 

sample array. We replicated past findings that observers had a strong tendency to report the 7 

best remembered items first (Adam et al., 2017; Ngiam et al., 2022; but see Oberauer, 2022) 8 

such that accurate recall was concentrated within a subset of three objects with chance 9 

performance in the last three responses, indicative of an item limit of approximately 3. Critically, 10 

this empirical pattern reveals a strong object-based clustering of all successfully stored feature 11 

values to a 3-item subset of the 6-item sample array. This pattern contradicted the independent 12 

feature model of WM storage, in which separable resources for each feature dimension can be 13 

deployed without respect to the objects that contain the stored features (Fougnie & Alvarez, 14 

2011). Accordingly, formal model comparisons indicated our data was best fit by an object-15 

based pointer model (asserting object-based storage limits with independent feature loss) for all 16 

120 participants across the four experiments, outperforming the independent features model 17 

(feature-based memories distributed across the memoranda independent of the objects that 18 

contain them). The object-based pointer model also provided superior fits compared to the 19 

strong object model (memory representations are feature-integrated objects without loss), 20 

emphasizing that object-based memories are not lossless. Instead, independent feature loss 21 

was observed within each working memory representation, in line with past work (Fougnie & 22 

Alvarez, 2011). Our modelling results closely align with the findings of Sone et al. (2021) and Li 23 

et al. (2022), who reported the strong but imperfect concurrence of recall precision for features 24 

from the same item, and also favored an account with integrative object-based representation 25 

with independent feature storage (see also Markov et al., 2019). In addition, our results extend 26 
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evidence for the existence of an object-based item limit in visual WM capacity, with guessing in 1 

the last three responses beyond that item limit, replicating the findings of previous whole-report 2 

experiments conducted by Adam et al. (2017) and Ngiam et al. (2022) (but see also, Oberauer, 3 

2022). 4 

A viable explanation for the object-based item limit that we observed across all of our 5 

experiments is a cap to the number of discretized items that can be stored in WM, possibly 6 

because of a limit in the number of content-independent pointers that enable tracking of items 7 

through time and space (Hakim et al., 2019; Thyer et al., 2022). This object-based pointer 8 

hypothesis is inspired by the ideas of Pylyshyn’s (1989) fingers of instantiations (FINSTs) and 9 

Kahneman, Treisman and Gibbs’ (1992) object files. Both theories describe a for tracking 10 

individuated items through time and space, with a distinct but parallel mechanism for mapping 11 

featural content to the representation of each item. A similar serial token mechanism features in 12 

the memory for latent representations (MLR) model of Hedayati et al. (2022), whereby specific 13 

patterns of activity in a binding pool of neurons are mapped to and retrieved from tokens, 14 

enabling individuation of item representations in working memory. This is akin to the explicit 15 

conjunctive coding of feature conjunctions that has recently been observed in the human 16 

perirhinal cortex (Erez et al., 2016; Liang et al., 2020) and a similar pointer mechanism has 17 

been theorized as a way the human brain adapts representations of content to representations 18 

of systematic structures (O’Reilly et al., 2022).  19 

Thyer et al. (2022) provided electrophysiological evidence for the existence of content-20 

independent pointers. They reported a multivariate signature in electroencephalography (EEG) 21 

activity for WM load that generalizes across changes in both the type of visual features stored, 22 

and the number of features within each to-be-remembered item. Critically, the multivariate load 23 

signature respected the number of items rather than the total number of attended locations, 24 

suggesting a consistent deployment of this pointer mechanism to the objects rather than 25 

locations. This dovetails with the findings of Hakim et al. (2019) regarding the contralateral delay 26 

https://www.zotero.org/google-docs/?LItHgB
https://www.zotero.org/google-docs/?EbjDrm
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activity (CDA), an event-related potential component measured using EEG that has consistently 1 

been shown to track working memory load (Balaban & Luria, 2016; Feldmann-Wüstefeld et al., 2 

2018; Ikkai et al., 2010; Luria et al., 2016; Vogel & Machizawa, 2004). Hakim et al. (2019) 3 

reported no CDA when spatial attention was deployed to  specific locations, but a clear CDA 4 

component when items occupying the same number of locations were actively maintained in 5 

WM (see also Balaban, Drew and Luria (2019) which similarly reports neural evidence for an 6 

object-based pointer account of WM with the CDA). We believe this is giving rise to the 7 

observed item limit in our experiments – only three pointers can be reliably deployed at the 8 

same time. 9 

An object-based pointer model parsimoniously accommodates for the independent 10 

feature loss we observed in our experiments and that also has been documented in the past 11 

(Fougnie & Alvarez, 2011). That is, while object-based content is mapped on to the pointers, 12 

decay of the mapping from pointers to a feature produces the dropping of independent features 13 

from the WM representation and is then unavailable to be retrieved for recall. Cowan et al. 14 

(2013) proposed a model very similar in conception to the object-based pointer account 15 

proposed here. In their model, WM is assumed to have a fixed object-based capacity limit. 16 

Within this limit, while one feature of an object is always remembered, storage of any additional 17 

features from the same object is probabilistic and therefore potentially unsuccessful (see 18 

Hardman & Cowan, 2015; Oberauer & Eichenberger, 2013 for successful applications). This 19 

account would align well with our object-based pointer model if we presume that location is a 20 

core (i.e., always stored) feature of each object encoded into working memory (Golomb et al., 21 

2014), and probabilistic loss (or failure to encode) of additional nonspatial features.  22 

A recent study proposed that the mechanism for decay may not necessarily be feature-23 

specific in nature, but the result of accumulating internal noise (Kuuramo et al., 2022). That is to 24 

say, feature loss or other feature-based effects are produced by factors that impact recall 25 

performance for a single item in WM. However, the present study indicates that the overall 26 



OBJECT-BASED ENCODING IN VWM 

 40 

storage ceiling for WM is determined by object-based encoding. Thus, we believe the object-1 

based pointer model to be a productive theoretical framework for understanding capacity limits 2 

in working memory (see Ngiam, 2023). 3 

An alternative interpretation of the present results is that the limit on accurate recall is 4 

not set by object-based encoding per se, but rather by the number of locations. By this account, 5 

feature values are encoded independently – and without respect to the objects that contain 6 

them – but are clustered due to their shared spatial location (Schneegans & Bays, 2017, 2019). 7 

On the one hand, this location-based perspective is compatible with the spatiotemporal pointer 8 

account that we have proposed, because spatial indexing is a core component of this content-9 

independent indexing operation. On the other hand, one can also conceive of a pure location-10 

based account in which there is no assumption of object-based representations that constrain 11 

encoding into WM. In the latter case, both features of a single object might be encoded not 12 

because they are contained in the same object, but because those features occupied a shared 13 

location. The present results cannot provide a decisive test between these alternatives, but 14 

there is past behavioral and neural work that argues against location-based determinants of WM 15 

capacity. For instance, CDA activity tracks the total number of objects encoded into visual WM 16 

even when multiple objects are sequentially presented in the same position (Ikkai et al., 2010; 17 

Vogel et al., 2005). Moreover, visual working memory performance is not affected when multiple 18 

stimuli are presented sequentially within the same location, compared to when each stimulus 19 

has a unique location (Woodman et al., 2012). Thus, our working hypothesis is that storage in 20 

visual WM is constrained by the number of objects stored, rather than by the number of 21 

locations those objects occupy. This object-based model of capacity also entails the assumption 22 

all features stored from multi-feature objects will also be constrained by the number of objects 23 

they occupy rather than the number of positions in which those features appeared.  24 

In sum, our findings provide novel evidence for an object-based limit on storage in visual 25 

working memory. Successfully recalled features were restricted to the first three items recalled 26 
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for both single- and multi-featured objects, contradicting accounts that argue for independent 1 

storage of distinct features without regard to the objects that contain those features. In addition, 2 

we replicated past findings of object-based benefits, with substantially more feature values 3 

recalled from multi-featured objects relative to objects with only one relevant feature. Thus, 4 

although our object-based pointer account acknowledges that features can be lost in a 5 

probabilistic manner, capacity limits in visual WM appear to be constrained by an object-based 6 

limit of approximately three items. These findings fall in line with our working hypothesis that 7 

storage in visual working memory is constrained by the limited availability of spatiotemporal 8 

pointers (akin to FINSTs and object files) that enable the tracking of stored items through time 9 

and space. 10 

Constraints of Generality 11 

We observed the same empirical pattern across four experiments with differing encoding 12 

durations (500 msec in Experiments 1, 3 and 4, and 150 msec in Experiment 2) and stimuli 13 

(colored clock faces in Experiments 1 and 2, colored triangles in Experiment 3, and colored 14 

shapes in Experiment 4). We note that a factor that can impact performance in visual WM is the 15 

similarity between items – we employed highly discriminable colors, orientations and shapes to 16 

reduce any effect of similarity. Nevertheless, we expect our key finding – that object-based 17 

encoding constrains capacity limits – to generalize across presentation durations and stimuli 18 

typically used in visual WM studies. 19 

The four experiments conducted in the present study contained unique samples – no 20 

participant had completed multiple experiments. However, the participant samples came from 21 

the local University of Chicago community, mostly (but not all) young adults attending college. 22 

Our impression is that the demographics of our participants will somewhat match that of the 23 

University of Chicago student corpus. While there are individual differences in visual WM, we 24 

expect our findings will generalize across samples of the human population.  25 

  26 
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