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Observers can voluntarily select which items are encoded into working memory, and the efficiency of this
process strongly predicts memory capacity. Nevertheless, the present work suggests that voluntary
intentions do not exclusively determine what is encoded into this online workspace. Observers indicated
whether any items from a briefly stored sample display had changed. Unbeknown to observers, these
changes were most likely to occur in a specific quadrant of the display (the dominant quadrant). Across
84 subjects and 5 groups of observers, change detection accuracy was significantly higher for items in
the dominant quadrant, suggesting that memory encoding was biased towards the dominant quadrant.
Only 9 of the 84 subjects were able to correctly specify the dominant quadrant when asked whether any
location was more likely to contain the changed item, but more sensitive forced-choice procedures did
reveal above-chance discrimination of the dominant quadrant. Nevertheless, because forced choice
performance was unrelated to the size of the bias and no observer reported a biased encoding strategy,
the bias was unlikely to depend on voluntary encoding strategies. The encoding bias was not due to a
reduction in the response threshold for indicating changes in the dominant quadrant (Experiment 2).
Finally, separate measures of the number and resolution of the representations in memory suggested
that encoding was biased in a discrete slot-based fashion (Experiment 3). That is, although items in
the dominant quadrant were more likely to be encoded into memory, mnemonic resolution for the
favored items was not affected.
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Working memory allows the maintenance of information in an
easily updated and accessible state. However, this system is sub-
ject to strong capacity limits, such that the average observer can
maintain only about three to four items at a time (Luck & Vogel,
1997; Pashler, 1988; Sperling, 1960). These severe limits place
priority on understanding the processes that guide the encoding of
information into this online mental workspace. It has long been
known that observers can exert voluntary control over what is
encoded into working memory, and previous research has exam-
ined basic characteristics of this process such as its time course
(e.g., Reeves & Sperling, 1986; Vogel, Woodman, & Luck, 2006)
and the efficiency with which relevant items are selected for
encoding (McNab & Klingberg, 2008; Vogel, McCollough, &
Machizawa, 2005). Indeed, a growing body of research has sug-
gested that the voluntary selection of relevant over irrelevant
information is intertwined with working memory capacity (e.g.,
Awh, Vogel, & Oh, 2006; Engle, 2002; Kane, Bleckley, Conway,
& Engle, 2001; Vogel & Awh, 2008). For example, Vogel et al.
(2005) examined observers’ ability to selectively encode only the

relevant items in a display into visual working memory by pro-
viding trial-by-trial cues indicating the to-be-remembered items.
During some trials, irrelevant items of a different color were also
presented in the sample display. The key finding was that individ-
ual differences in capacity estimates strongly predicted the ability
to block irrelevant objects from entering working memory, as
assessed by a neural measure of the number of distractor items that
were encoded into memory (Vogel et al., 2005; see also McNab &
Klingberg, 2008). Thus, robust links have been identified between
the voluntary gating of information into working memory and the
total number of items that can be effectively represented. Indeed,
Vogel et al. (2005) proposed that the key source of individual
variability in such memory tasks may be the observers’ ability to
keep irrelevant stimuli from occupying the limited space in work-
ing memory, rather than the total amount of space that is available.

Given the clear links between selection and working memory
capacity, there is motivation to document the full range of pro-
cesses that determine which items are encoded into working mem-
ory. We show that manipulating the probability of target locations
also exerts an influence on which items will be encoded into
working memory, even though observers were uninformed about
the probability manipulation and only rarely were able to specify
the probable target location when directly queried. Our work
follows from a number of past studies that have shown that the
deployment of attention is influenced by acquiring, consciously or
unconsciously, the probability with which targets appeared in
certain locations, leading to faster and more accurate processing of
the probable target locations than the improbable target locations
(Geng & Behrmann, 2005; Hoffmann & Kunde, 1999; Miller,
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1988; Shaw, 1978; Shaw & Shaw, 1977). For example, Shaw and
Shaw (1977) presented a target letter briefly in one of eight
possible target locations on an imaginary circle, and manipulated
the probability with which target appeared in different locations.
Subjects were informed about the location probability in advance,
and the authors showed that subjects could use that information to
identify a target more accurately (Shaw & Shaw, 1977) and
quickly (Shaw, 1978) at the probable location, suggesting that
visual attention was biased towards the probable target locations.

The aforementioned studies employed tasks in which the key
limiting factor was the speed or quality with which single targets
could be visually encoded. By contrast, the present research ex-
amined whether manipulating the probability of target locations
would also bias encoding when all items in the sample display are
potential targets and performance was limited by the storage of
information in visual working memory. Although encoding into
working memory is traditionally thought to depend on partici-
pants’ voluntary selection of the stored items, the present work
tested whether statistical regularities in prior experience would
also influence the deployment of limited storage resources in
working memory independent of the voluntary strategies of the
observer. To anticipate the results, we found that when targets
were more probable in one quadrant of the display, observers were
biased to encode items from that quadrant (the dominant quadrant)
into visual working memory, though observers failed to report any
explicit encoding bias. Our work follows from other studies that
have examined how statistical regularities can influence perfor-
mance in memory-limited tasks. For example, Olson, Jiang, and
Moore (2005; see also Beck, Angelone, Levin, Peterson, & Vara-
kin, 2008) measured observers’ ability to report the position of a
missing stimulus from an array of stimuli held in spatial working
memory. Olson et al. (2005) found that when the same item was
consistently removed from repeated spatial arrays, observers were
better at reporting the missing location than with novel arrays.
Moreover, repeated arrays only generated this benefit when the
same item was consistently removed from the display, suggesting
that likely targets had been prioritized during encoding into work-
ing memory while overall capacity remained constant for repeated
arrays. Finally, although Olson et al. found that observers could
recognize the repeated displays with above-chance accuracy, they
also found that recognition performance did not correlate with the
magnitude of the benefit for repeated displays. Thus, their data
suggest that visual learning of repeated sample arrays biased
encoding into spatial working memory without affecting observ-
ers’ explicit encoding strategies.

In the present work, a key extension of the previous findings is
that we offer new evidence regarding how resource allocation in
visual working memory is biased when the probable location of
targets is manipulated. In particular, we examined whether the bias
influenced the probability of encoding into working memory, or
the precision with which the encoded items were represented. This
question is relevant to the ongoing debate regarding the nature of
capacity limits in visual working memory. According to flexible
resource models, capacity in working memory is determined by
competition for a central pool of resources that can be flexibly
allocated across the stored items, such that items of greater com-
plexity receive a larger proportion of the overall resources (e.g.,
Alvarez & Cavanagh, 2004; Bays & Husain, 2008; Eng, Cheng, &
Jiang, 2005). Thus, when items acquire a higher priority for

storage in visual working memory, flexible resource models sug-
gest that the optimal encoding strategy would be to allocate a
greater proportion of resources to the prioritized items, thereby
leading to better mnemonic precision for those items. By contrast,
so-called discrete slot models (e.g., Barton, Ester, & Awh, 2009;
Rouder et al., 2008; Zhang & Luck, 2008) suggest that resources
in visual working memory are allocated in a quantized fashion
such that observers can choose which items are stored in working
memory (i.e., which items are assigned a “slot”) but without the
possibility of asymmetrically dividing resources between the ac-
tively represented items. Zhang and Luck (2008) provided evi-
dence in favor of discrete resource allocation by showing that
cueing observers to place high priority on a specific item in a
sample array increased the probability that the item was encoded
into memory, but had no influence on the precision with which that
item was represented. Likewise, Barton et al. (2009) found that the
precision with which a given item was represented was unaffected
by the complexity of the other items in the display, inconsistent
with the claim that more complex items are assigned a higher
proportion of resources from a shared central pool. The present
work provides converging evidence relevant to this debate by
demonstrating that increasing the probability of targets in a given
region influences only the probability that items from that region
will be encoded, without affecting the resolution or clarity with
which those items are represented. Thus, encoding biases elicited
by statistical learning appear to bias a discrete or quantized process
of resource allocation during encoding into visual working mem-
ory.

Experiments 1a, 1b, and 1c

Experiments 1a, 1b, and 1c tested whether change detection
performance would be significantly better at locations where
changes were more probable. In addition, postexperiment ques-
tionnaires examined whether subjects were aware of this proba-
bility manipulation. The key difference between the three experi-
ments was the strength of the probability manipulation. The
dominant quadrant, in which changes were more likely, contained
80%, 60%, and 50% of the changes in Experiments 1a, 1b, and 1c,
respectively.

Method

Subjects. Three different groups of students from the Univer-
sity of Oregon participated in Experiments 1a (N � 12), 1b (N �
24), and 1c (N � 12) for course credit. The procedure lasted 1 hr.
All subjects reported normal or corrected-to-normal visual acuity.

Stimuli. The stimuli were colored squares (white, black, red,
blue, green, yellow, and purple). Each object subtended approxi-
mately 1.5° � 1.5° of visual angle. Four or eight randomly
selected objects were presented in different locations within a
rectangular region 17° tall and 20° wide. The horizontal and
vertical coordinates of each object’s position were randomly se-
lected (with continuous variation in both dimensions), with the
constraint that equal numbers of objects must occupy each quad-
rant, and no object could appear within 1.7° of another object.
Subjects were seated 50 cm from the computer screen. For each
subject, a single quadrant was selected as the dominant quadrant
(counterbalanced across subjects). In Experiment 1a, 80% of the
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changes occurred in the dominant quadrant and the other 20% of
the changes were randomly divided among the remaining three
quadrants (nondominant quadrants). Therefore, approximately
6.7% of the changes occurred in each of the nondominant quad-
rants. The proportion of trials in the dominant quadrant changed to
60% in Experiment 1b, and 50% in Experiment 1c. For Experi-
ments 1b and 1c, each nondominant quadrant contained an equal
number of changes such that 13.3% and 16.7% of changes fell in
each nondominant quadrant in Experiments 1b and 1c, respec-
tively. Subjects were not told about the probability manipulation.

Procedure. Each trial (illustrated in Figure 1) began with the
onset of a light grey region that encompassed all the possible
stimulus positions; 1,541 ms later, a sample array of either four
(half of all trials) or eight (half of all trials) colored squares
(randomly selected with replacement, with the constraint that no
color appeared more than twice) was presented for 100 ms, fol-
lowed by a 900 ms delay period. Finally, a test array appeared that
was either identical to the sample array (with probability .5), or
contained one item whose color had changed (with probability .5).
The test array remained visible until subjects pressed the “z” key
to indicate that the test array was the same as the sample array, or
the “/” key to indicate that it was different. Subjects were in-
structed to place the highest priority on accuracy, yet to respond
quickly without sacrificing accuracy. Subjects completed six
blocks of 80 trials in Experiment 1a, eight blocks of 60 trials in
Experiment 1b, and 10 blocks of 48 trials in Experiment 1c. At the
end of the experiment, subjects were given a questionnaire to
assess their awareness of the probability manipulation. They were
asked whether they had noticed a specific location that was more
likely to contain the changed items. A paper diagram of a plain
square (with no demarcation of quadrants) depicting the square
region where stimuli were presented was drawn below the ques-
tion. If subjects answered yes, they checked the corresponding
location on the diagram. Because the quadrants were not specified,
they marked a location of their choice anywhere within the square
diagram. If more than one location was indicated, they were asked
to choose only one.1 Subsequently, all subjects were also asked if
they had noticed anything else to provide them opportunities to
describe their experience with our task. After the completion of the
questionnaire, the experimenter sat with each participant individ-
ually and went over the questionnaire to make sure the questions
were understood correctly and to verify the intended answers if
there was an initial misunderstanding.

Results and Discussion

Experiment 1a. The four-item condition produced ceiling
effects (M accuracy � 93%), so all analyses were performed on the
eight-item condition. Memory capacity was estimated at 4.74 on
average, based on the formula developed by Pashler (1988) and
refined by Cowan (2000).2 Accuracy in the eight-item condition in
the dominant quadrant (74%) was significantly higher than accu-
racy in the nondominant quadrants (57%), t(11) � 2.58, p � .03,
resulting in an average bias effect of 17% (see Figure 2). A large
bias effect (18%) was present from the first block of the trials. A
2 � 6 analysis of variance (ANOVA) with probability manipula-
tion (dominant and nondominant) and block (6 blocks) as factors
to examine the time course of the bias effect revealed a significant
main effect of probability manipulation, F(1, 11) � 7.03, p � .02,
�p

2 � .39, no effect of block, and no significant interaction,
suggesting that a similar bias was present from the first block
onward. Indeed, we failed to see evidence of such an interaction
throughout all of the studies reported here. This null result may
seem surprising at first glance. Given that observers were not
exposed to the probability manipulation prior to the first block, one
might presume that that the effect should grow larger across blocks
as the evidence of location bias accumulates. A likely explanation,
nevertheless, is that statistical learning occurred at a relatively
rapid rate in these experiments, such that the effect had reached its
maximal amplitude during the first block of trials. This hypothesis
is consistent with past studies that observed measurable effects of
visual statistical learning after only several trials of exposure (e.g.,
Turk-Browne, School, Chun, & Johnson, 2008). The postexperi-
ment questionnaire revealed that observers only identified the
dominant quadrant correctly in two of 12 cases (17%). Five sub-
jects of the subjects that did not point out the dominant quadrant
reported that they did not notice any biases in target position
during the experiment, and the rest selected either one of the
nondominant quadrants, or a broad region (e.g., “the edges of the
display”) that was not centered on the dominant quadrant.

Experiment 1b. The average capacity estimate was 4.1 ob-
jects. Similar to the findings in Experiment 1a, Experiment 1b
revealed significantly higher accuracy in the dominant quadrant
(73%) than in the nondominant quadrants (62%), t(23) � 4.82, p �
.01 (see Figure 2), with an average bias effect of 11%. A bias effect
started to appear in the second block (8%), and ended with 13% in
the last block. A 2 (probability manipulation) � 8 (block) ANOVA
showed a significant main effect of both the probability manipu-
lation, F(1, 23) � 23.68, p � .01, �p

2 � .51, and block, F(7, 161) �
3.90, p � .01, �p

2 � .15. The effect of block appears to reflect a rise
in accuracy after the first block. Again, there was no significant
interaction between probability manipulation and block, suggest-
ing that the bias effect was relatively stable across blocks. Only
one out of the 24 subjects correctly identified the dominant quad-
rant in the postexperiment questionnaire, with the other subjects

1 This happened in five out of 84 subjects.
2 This formula requires the inclusion of accuracy during no-change

trials. Thus, in all experiments except for Experiment 2 (in which no-
change trials were specifically associated with either the dominant or
nondominant quadrants), the same pool of no-change trials was used to
derive k in both the dominant and nondominant quadrants. Capacity (k) is
estimated by the formula: k � set size � (hit rate – false alarm rate).

Figure 1. The sequence of events in a single trial of the change detection
task.
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either reporting not to have noticed any probability manipulation
(n � 9), selecting incorrect quadrants, or a broad region not
centered on the dominant quadrant.

Experiment 1c. The average capacity estimate was 3.5 ob-
jects. Similar to Experiments 1a and 1b, accuracy in the dominant
quadrant (65%) was significantly higher than in the nondominant
quadrants (53%), t(11) � 2.39, p � .04 (see Figure 2). The average
bias effect was 12%. A 2 (probability manipulation) � 10 (block)
ANOVA revealed a significant main effect of probability manip-
ulation, F(1, 11) � 5.72, p � .04, �p

2 � .34, no effect of block and
no interaction between probability manipulation and block. Two
out of 12 subjects correctly identified the dominant quadrant, with
the rest reporting not to have noticed any probability manipulation
(n � 4), selecting incorrect quadrants, or a broad region that was
not centered on the dominant quadrant.

Finally, we analyzed the combined data from Experiments 1a,
1b, and 1c. This 2 � 2 ANOVA with experiment (1a, 1b, or 1c),
and probability manipulation (dominant or nondominant) as
between- and within-factors, respectively, revealed a main effect
of probability manipulation, F(1, 45) � 29.09, p � .01, �p

2 � .39,
but not of experiment, F(2, 45) � 2.19, p � .12, �p

2 � .09.
Unexpectedly, we did not observe an interaction between condi-
tion and experiment, F(2, 45) � .41, p � .67, �p

2 � .02, suggesting
that the effect was not sensitive to the parametric variation in the
strength of the probability manipulation across these procedures.
Admittedly, we were surprised at the failure to observe reliable
differences in the size of the encoding bias across relatively large
changes in the strength of the probability manipulation. Although
there was a moderate numerical difference between the bias effect
in Experiments 1a, 1b, and 1c, this was not statistically reliable.
We cannot offer any conclusive evidence for why this null result
was obtained, but our working hypothesis is that measurement
noise prevented a sensitive assessment of the predicted relation-
ship between the strength of the bias and the strength of the
probability manipulation. The factors that may have increased
measurement noise included relatively low numbers of trials in
which the critical stimulus appeared in the nondominant quadrants
in Experiment 1a, and relatively low numbers of subjects in
Experiment 1a and 1c. Nevertheless, the three experimental groups
did serve the purpose of showing that the core effect was robust
across three independent groups of observers. Finally, the analysis
of reaction time from all three experiments ruled out a speed-

accuracy tradeoff explanation of encoding bias; reaction times
were significantly faster in the dominant quadrant (M � 1,065,
SD � 233) than in the nondominant quadrants (M � 1,125, SD �
270), F(1, 45) � 8.84, p � .01, �p

2 � .16. This main effect of
condition did not interact with experiment. In addition, there was
a main effect of the experiment factor, such that reaction time
decreased as the strength of the probability manipulation in-
creased, F(2, 45) � 6.17, p � .01.

To summarize the results of Experiments 1a, 1b, and 1c, three
separate groups of subjects replicated the finding that change
detection performance was enhanced in regions that were more
likely to contain the changed target. The postexperiment question-
naire suggested that subjects were not aware of the probability
manipulation, in that only a very small proportion of subjects (five
of 48) identified the dominant quadrant when asked whether any
specific regions of the screen were more likely to contain targets.
Moreover, subjects who correctly identified the dominant quadrant
did not show a larger bias effect (6%) than those who did not (n �
43; 14%). Nevertheless, we cannot conclude that subjects had no
explicit knowledge of the dominant quadrant because a more sensitive
forced-choice procedure in Experiments 2 and 3 revealed above-
chance identification of the dominant quadrant. That fact notwith-
standing, the failure of observers to indicate the dominant quadrant
when initially queried, combined with the disconnect between suc-
cessful identification and the size of the bias effect argues that the
observed encoding bias was not a product of voluntary encoding
strategies.

Experiment 2

The results so far clearly show higher accuracy for change
detection in the dominant quadrant. This finding suggests that
knowledge of the likely target position biased memory encoding
towards the items in the dominant quadrant. However, because the
probability manipulation could only be examined during “change”
trials, we were not able to directly compare the rate of false alarms
(i.e., trials in which observers incorrectly indicated a change) in the
dominant and nondominant conditions of Experiments 1a, 1b, and
1c. Thus, the previous experiments cannot rule out the possibility
of a shift in decision criterion for indicating changes in the dom-
inant and nondominant quadrants. For example, if observers re-
duced their response threshold for indicating a change when the
suspected change was in the dominant quadrant, then change
detection rates could improve in the dominant quadrant even if the
amount of information retained from that quadrant was not af-
fected. Such a reduction in response thresholds for indicating a
change in the dominant quadrant would also increase false alarms
in the dominant quadrant, but this could not be tested in Experi-
ments 1a through 1c, because the dominant and nondominant
quadrants were not distinguished during the no change trials when
false alarms were possible. In Experiment 2, we addressed this
limitation by cueing a specific item in the test display and asking
observers to indicate whether it was the same color as the item that
had occupied that position in the sample array. This provided
separate measurements of hit and false alarms rates in the domi-
nant and nondominant quadrants, enabling an unambiguous test of
whether sensitivity to changes was higher in the dominant quad-
rant.

Figure 2. Change detection accuracy as a function of the quadrant that
held the changed item in Experiments (Exp.) 1a, 1b, and 1c.
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Method

One methodological concern was that the use of a single probe
would make the probability manipulation much easier to notice. To
avoid this problem, observers were first run through the same
procedure used in Experiment 1b, followed by a neutral procedure
in which observers were cued to indicate the status (changed or
not) of a single item in the test array. Because previous pilot data
had established that these bias effects linger for a substantial
period even after the bias in target frequencies is eliminated, we
expected the probability effect from the first part of the procedure
to linger throughout the second neutral phase of the study. As the
data will show, the predicted encoding biases were robust through-
out the neutral phase of the experiment.

Subjects. Twenty students from the University of Oregon
participated in a 1-hr experiment for course credit (n � 10) or
monetary compensation (n � 10). All subjects reported normal or
corrected-to-normal visual acuity.

Stimulus. All aspects of the stimuli were equivalent to those
in Experiment 1b with the exception of the postcue box used
during the neutral condition. In the neutral condition, the test array
included a brown box cue (2.1° � 2.5°) that encircled the critical
item in the test display, and this cue appeared 750 ms after the
onset of each test array. The cued item was the only item that could
have changed, and it appeared equally often in each of the four
quadrants.

Procedures. Four blocks (60 trials each) of the biased condi-
tion preceded four blocks (64 trials each) of the neutral condition.
In the neutral condition, subjects were instructed to indicate
whether the cued item had changed. The cued item was different
from the sample array with probability .5. A postexperiment ques-
tionnaire was administered after completing the entire session to
assess subjects’ awareness of the probability manipulation. To
provide a more sensitive test of whether subjects had any explicit
knowledge of the dominant quadrant, the postexperiment question-
naire was modified so that those who reported not to have noticed
the probability manipulation or did not specify a quadrant when
first queried (e.g., chose a broad region), were also required to
choose one of the four quadrants where they thought changes were
most likely to occur by marking a quadrant on a square diagram.

Results and Discussion

Accuracy in the four-item trials was 90% on average, so that
ceiling effects precluded the emergence of the predicted encoding
bias. Thus, the analysis reported here focuses on the eight-item
trials. Replicating the previous experiments, the biased condition
from the initial phase of the experiment revealed better change
detection accuracy for the dominant quadrant (65%) than for the
nondominant quadrants (52%), resulting in a bias effect of 13%,
t(19) � 3.85, p � .01. A bias effect was already present during the
first block (11%). A 2 (probability manipulation) � 4 (block)
ANOVA to examine the time course of the bias revealed a signif-
icant main effect of the probability manipulation, F(1, 19) � 15.3,
p � .01, �p

2 � .45, no main effect of block and no interaction
between the probability manipulation and block, suggesting that
the bias was similar in size throughout the four blocks of the biased
condition. The size of the encoding bias was the same whether
participants received payment or course credit (both 13%). There-

fore, the analysis below did not distinguish these two groups. Next,
we analyzed the data from the subsequent neutral condition, with
each quadrant classified as dominant or nondominant based on the
assignments in the initial biased procedure. The bias effect in the
neutral phase of the study (11%) was sustained at the same level as
during the initial biased procedure. Accuracy in the change trials
was 56% in the dominant quadrant and 45% in the nondominant
quadrant, t(19) � 2.64, p � .02. Accuracy in no-change trials was
equivalent in the dominant (92%) and nondominant (94%) trials,
indicating that false alarms were no more likely in the dominant
quadrant than in the nondominant quadrant. Because separate hit
and false alarm (HR and FA, respectively) rates were available for
the dominant and nondominant quadrants, we examined hit rate
(HR) minus false alarm rate (FA) to obtain a bias-free measure of
performance. This estimate revealed a significantly higher perfor-
mance for the dominant quadrant (M � .48, SD � .22) than for the
nondominant (M � .39, SD � .14) quadrants, t(19) � 2.23, p �
.04, indicating greater sensitivity to changes in the dominant
quadrant (see Figure 3). A 2 (probability manipulation) � 4
(block) ANOVA using this dependent measure revealed a signif-
icant main effect of probability manipulation, F(1, 19) � 4.87, p �
.04, �p

2 � .20. There was no significant main effect of block, F(3,
57) � 1.06, p � .37, or interaction between probability manipu-
lation and block, F(3, 57) � 0.27, p � .85.

Finally, we examined the possibility of differential response bias
in the two conditions by calculating B� (Grier, 1971). This analysis
showed that response bias was indistinguishable between the dom-
inant (M � .64, SD � .37) and nondominant quadrants (M � .65,
SD � .28), t(19) � –0.07, p � .94. This suggests that, although
subjects seemed more inclined to indicate no change than change,
this bias was equally likely for both conditions. The same result
was obtained using two alternate measures of bias (i.e., B�D;
Donaldson, 1992; or B�H; Hodos, 1970). Thus, the results suggest
that improved change detection in the dominant quadrant was not
caused by a selective reduction in the response threshold for
indicating a change in that quadrant. Instead, we conclude that the
increased probability of targets in the dominant quadrant elicited a
bias to encode the items from that location, thereby enhancing later
sensitivity to changes.

Two subjects out of 20 were able to correctly identify the
dominant quadrant when first queried about whether they had
noticed any location that was more likely to contain changes.
Fifteen subjects reported having no knowledge about the proba-

Figure 3. Accuracy calculated by the hit rates (HR) minus false alarms
(FA) during the neutral phase in Experiment 2.
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bility manipulation. However, when these subjects were forced to
select a quadrant, 12 of 20 observers correctly guessed the domi-
nant quadrant, exceeding chance performance: �2(1) � 9.8, p �
.01. Thus, observers were able to access explicit knowledge about
the probability manipulation. Yet, those subjects who guessed the
dominant quadrant correctly did not show a larger bias (n � 12,
M � 13%, SD � .18) than those who did not (n � 8, M � 7%,
SD � .19), t(18) � 0.75, p � .47; this conclusion is reinforced by
a combined analysis of Experiments 2 and 3 below. Moreover, no
observer reported using a biased encoding strategy. Thus, although
subjects clearly had some explicit knowledge of the dominant
quadrant, it remains unlikely that this knowledge motivated a
voluntary encoding bias towards the dominant quadrant.

Experiment 3

Experiments 1 and 2 suggest that the probability manipulation
influenced the allocation of limited resources for storage in work-
ing memory, so that more information was retained from the
dominant quadrant. The goal of Experiment 3 was to further
characterize how these statistical regularities influenced the allo-
cation of resources in visual working memory. According to flex-
ible resource models, capacity in working memory is determined
by a central pool of resources that can be flexibly divided between
the items to be stored, such that items of greater importance or
complexity can be granted a larger proportion of this shared
resource pool (e.g., Alvarez & Cavanagh, 2004; Bays & Husain,
2008; Eng et al., 2005; Wilken & Ma, 2004). A key assumption of
flexible resource models is that the precision or resolution of each
representation in working memory is determined by the relative
proportion of resources devoted to that item. From this perspec-
tive, the optimal encoding strategy given a spatial bias in target
position would be to allocate a larger share of resources to items in
the dominant quadrant, leading to higher resolution representations
of those items. By contrast, discrete “slot-based” models suggest
that capacity in working memory is determined by a limited
number of discrete “slots,” each of which can be assigned to a
single item (Barton et al., 2009; Rouder et al., 2008; Zhang &
Luck, 2008). In this case more slots could be devoted to the
dominant quadrant, leading to an increased probability that those
items would be stored. Biases in the assignment of discrete storage
slots, however, would lead to equivalent mnemonic resolution for
all items that were assigned to a slot, regardless of whether they
appeared in the dominant or the nondominant quadrant.

To examine which of these models provides the best description
of how statistical learning biases encoding into working memory,
Experiment 3 employed a procedure that enabled separate esti-
mates of the number and the resolution of the memory represen-
tations stored from the dominant and nondominant quadrants. This
was achieved by manipulating the similarity between the critical
item in the sample array and the new item that replaced it in the
test array. The rationale for this design follows from recent evi-
dence (Awh et al., 2007; Barton et al., 2009; Jiang, Shim, &
Makovski, 2008; Scolari, Vogel, & Awh, 2008) that the primary
limiting factor for change detection performance depends critically
on the size of the changes between the sample and test arrays.
When the changes are large, accurate change detection depends
primarily on whether the critical item has been stored in working
memory (consistent with the underlying assumptions of the for-

mula used to calculate capacity estimates (Pashler, 1988; Cowan,
2000). Thus, the rate at which large changes are detected provides
an estimate of the number of items encoded into working memory.
By contrast, when changes are small (i.e., when the psychological
similarity of the sample and test is high), then even when the
critical item is stored there is a higher probability of comparison
errors in which observers fail to perceive the difference between
the sample and test items. Given that increasingly precise repre-
sentations of the sample are required to detect such small changes,
the incidence of such comparison errors may provide a useful
operational definition of mnemonic resolution (Awh et al, 2007;
Barton et al., 2009).

Multiple studies of delay-specific neural activity bolster our
claim that change detection with low sample-test similarity is
limited by the number of items that can be stored in working
memory. These studies have shown that neural activity in the
parietal cortex reaches asymptote at the same set size where
behavioral estimates of the number of stored items reach asymp-
tote (Todd & Marois, 2004, 2005; Vogel & Machizawa, 2004;
Vogel et al, 2005) establishing a critical link between parietal
activity and behavioral estimates of capacity in working memory.
More important, Xu and Chun (2006) used both simple and com-
plex items in a similar task and found once again that the same
parietal region was sensitive to the number rather than the com-
plexity of the stored items. Thus, parietal activity reflects the
number rather than the complexity of the stored items, and parietal
activity is predicted by success in the detection of big changes. By
contrast, activity in distinct cortical regions maps onto perfor-
mance when changes are smaller and mnemonic resolution be-
comes the limiting factor. Thus, neural data converge with behav-
ioral data to suggest that it is productive to distinguish between the
number and the resolution of the representations in working mem-
ory, and that the detection of big and small changes can provide
useful estimates of these two aspects of memory ability (Awh et al,
2007; Xu & Chun, 2006).

To distinguish between flexible resource and slot-based models
of how encoding into working memory was biased by the proba-
bility manipulation, we estimated both the number and the reso-
lution of the stored representations in the dominant and nondomi-
nant quadrants. To reiterate, flexible resource models predict that
the optimal strategy would be to allocate a larger proportion of
resources to items in the dominant quadrant, thereby boosting
mnemonic resolution for those items. By contrast, discrete slot-
based models predict that items in the dominant quadrant should
be more likely to be stored, but that resolution should be equivalent
for each stored item regardless of which quadrant it occupies.

Method

Subjects. Sixteen students from the University of Oregon
participated in a 90-min experimental session for psychology
course credits. All subjects reported normal or corrected-to-normal
visual acuity.

Stimuli. All aspects of stimuli were equivalent to those in
Experiment 1b with the following exceptions. In addition to col-
ored squares, a new set of stimuli were included (in separate trials)
that allowed a straightforward manipulation of sample-test simi-
larity. The new stimuli (illustrated in Figure 4) included two ovals
(1.1° � 2.9°) and two rectangles (2.4° � 1.7°) with patterned
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surfaces. These stimuli were randomly sampled to create eight-
item sample arrays with the constraint that no specific object
appeared more than three times within a single display. During
change trials, the change was “big” 50% of the time (i.e., ovals
were replaced by rectangles, or vice versa) with the replacement
item randomly selected from the two possibilities. The other 50%
of the time, the change was small (oval replaced by oval, or
rectangle replaced by rectangle). We reasoned that when an oval
changed into a rectangle (or vice versa) that the large size of the
change would minimize the incidence of comparison errors; thus
performance in this condition was used to estimate the number of
items that could be maintained in that condition. By contrast, when
an oval changed into an oval (or a rectangle changed into a
rectangle) the changes were relatively small, such that even when
the critical item was stored we expected an increased probability of
comparison errors. Thus, based on the assumption that clearer
representations are needed to detect smaller changes, performance
during these small change trials was used to derive an estimate of
mnemonic resolution (details of this derivation described in the
Results section below). Just as with the color stimuli, changes
occurred with probability .5. During change trials with the ovals
and rectangles, big and small changes occurred equally often.
Finally, only eight-item displays were presented in Experiment 3.

Procedures. The general procedure was similar to that of
Experiment 1b. Six blocks (90 trials each) were administered to the
participants. For 30 of those trials, we presented color stimuli
identical to those in Experiment 1b (15 change and 15 no-change
trials). For the remaining 60 trials, the ovals and rectangles were
presented (30 no-change trials, 15 big-change trials, and 15 small-
change trials). The duration of the sample display was increased to
500 ms to ensure adequate time to encode the more complex
rectangle and oval stimuli. When the test display was presented,
subjects indicated whether one of the items had changed. The same
postexperiment questionnaire as in Experiment 2 was administered
after the session to assess subjects’ awareness of the probability
manipulation.

Results and Discussion

Accuracy during change trials in Experiment 3 is illustrated in
Figure 5. Replicating the previous observations, a reliable bias
effect was obtained for the color trials, such that accuracy during
change trials was significantly higher for the dominant quadrant

(79%) than for the nondominant quadrant (69%), t(15) � 2.99, p �
.01. A bias effect reached 11% by the third block, and a 2
(probability manipulation) � 6 (block) ANOVA showed a signif-
icant main effect of probability manipulation, F(1, 15) � 9.20, p �
.01, �p

2 � .38, no main effect of block, F(5, 75) � 0.68, p � .64,
and no interaction between probability manipulation and block,
F(5, 75) � 0.87, p � .51.

Because previous evidence suggests that distinct limiting factors
determine performance during trials with big (i.e., oval-to-
rectangle or rectangle-to-oval changes) and small (i.e., oval-to-
oval or rectangle-to rectangle) changes (Awh et al., 2007; Barton
et al., 2009) separate analyses were carried out for big and small
changes in the oval and rectangle displays. First, we note that the
pattern of individual differences in the big and small change trials
supported previous finding (Awh et al., 2007) and suggestions that
these conditions—despite employing the same sample stimuli
within the same blocks of trials—measure distinct aspects of
working memory ability. Specifically, capacity estimates from the
big change condition were reliably correlated with capacity esti-
mates obtained with the color stimuli (n � 16, r � .65, p � .01),
consistent with our hypothesis that performance in both conditions
was determined by a common limiting factor, the number of items
that could be stored in working memory. By contrast, although a
split-half correlation on the small change condition during odd and
even trials revealed that reliability was good for this measure (n �
16, r � .77, p � .01), capacity estimates from the small change
condition were not correlated with those from the color stimuli
(n � 16, r � .05, p � .87), consistent with the idea that perfor-
mance in the small change condition is limited by a qualitatively
different aspect of memory ability (i.e., mnemonic resolution)
from the other conditions.

The key results, however, concerned how the probability ma-
nipulation influenced the number and the resolution of the repre-
sentations encoded from the dominant quadrant. Here, the big
change trials showed the same pattern of bias that was observed in
the previous experiments, with 70% accuracy for changes in the
dominant quadrant and 60% accuracy for changes in the nondomi-
nant quadrant, t(15) � 2.74, p � .02. A 14% bias effect emerged
during the first block, and a 2 (probability manipulation) � 6
(block) ANOVA revealed a significant main effect of the proba-
bility manipulation, F(1, 15) � 7.52, p � .02, �p

2 � .33, no main
effect of block, F(5, 75) � 1.41, p � .23, and no interaction
between probability manipulation and block, F(5, 75) � 0.26, p �
.93. Thus, when the limiting factor for change detection was the

Figure 5. Accuracy during change trials as a function of the type of
change in Experiment 3.

Figure 4. The stimuli used in Experiment 3.
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number of items that could be held in working memory (i.e., in
both the color trials, and the big change trials with ovals and
rectangles), a clear advantage was observed when the critical item
appeared in the dominant quadrant. This mirrors the findings in the
earlier experiments to suggest that a larger number of items were
retained from the dominant quadrant. A different result emerged
when we examined performance in the small-change trials in
which performance was limited by mnemonic resolution. No reli-
able difference was found between resolution-limited change de-
tection in the dominant (41%) and nondominant (37%) trials,
t(15) � 1.8, p � .09. Taken at face value, this result suggests that
the encoding bias did not lead to higher resolution representations
in the dominant quadrant, a result that falls in line with the
predictions of discrete slot-based models of resource allocation.
Nevertheless, there was a numerical advantage for change detec-
tion accuracy in the dominant quadrant, and a trend towards a
reliable difference between accuracy in the dominant and non-
dominant quadrants. Recall, however, that a precise analysis of the
small-change trials should acknowledge that errors could have
occurred either due to a failure to store the critical item, or due to
errors in comparing the sample and test items (because of limited
mnemonic resolution); that is, accuracy in the small-change trials
was really a composite measure that was influenced by both the
number and the resolution of the stored representations. Thus, to
obtain a clearer estimate of whether mnemonic resolution was
influenced by the encoding bias, it was necessary to correct for
errors in the small change trials that were due to storage failures.
We accomplished this by using performance in the large change
trials to estimate (for each observer) the number of ovals and
rectangles that were stored in working memory. This estimate
allowed us to calculate the probability of storage failures in the
small change condition, and then to derive the probability of
correct comparison between the sample and test given that the
critical item was stored (Barton et al., 2009).

Here we describe the logic of this analytic approach. Accuracy
(Acc) in the small-change condition was assumed to be equal to
the probability that the object actually was encoded into working
memory (Pmem, where Pmem � k/set size, and k is estimated using
the big change and no-change trials [76%] with the oval/rectangle
stimuli) multiplied by the probability that the sample and test were
compared correctly (C), plus a correction for guessing based on
the assumption that subjects would guess correctly half of the time
when the object was not stored.

Acc � �Pmem � C	 � �1 – Pmem	/ 2.

Solving for C:

C � 
Acc – �1– Pmem	/ 2�/�Pmem	.

Using the probability of correct comparison (C) as an opera-
tional measure of mnemonic resolution (see Figure 6), we found
that resolution was no higher for items represented in the dominant
quadrant (C � 69%) than for those in the nondominant quadrant
(C � 67%), t(15) � 0.39, p � .70. Thus, although the results from
the big change and color trials suggested that more items were
stored from the dominant quadrant, we found no evidence that
resolution of those representations was influenced in a similar way.
These findings are inconsistent with a flexible resource model of
the encoding bias because those models suggest that a shared

resource pool can be allocated in a continuous fashion, with a
larger share of resources allocated to higher priority items. In this
case, a bias towards the dominant quadrant should have caused a
disproportionate allocation of resources to items in the dominant
quadrant, leading to higher mnemonic resolution for those items.
Instead, our results suggest that statistical regularities in target
position influenced encoding into visual working memory in a
discrete slot-based fashion. It is worth noting that the relatively
low performance for the small change condition was unlikely to be
due to a strategic difference in which interleaving both the big and
small changes within a single block might have encouraged par-
ticipants to adopt a “low-resolution” strategy for encoding sample
arrays. That is, subjects might have chosen to remember as many
items as they could (i.e., outline shapes) at the expense of storing
detailed information about each object (i.e., surface patterns). If
subjects had chosen not to store the details about surface patterns,
then a failure to find changes in their detection of changes in those
patterns would be difficult to interpret; in that case, a null result
might simply reflect performance at floor. The observers in this
experiment did store enough detail to detect these small changes,
however, as shown by above-chance performance in the small
change conditions (k � 1.2), and a mean probability of correct
comparison well above 50% (see Figure 6). Awh et al. (2007) also
provided some evidence against a shift to a low-resolution mode in
mixed blocks by showing no significant differences in the detec-
tion of small changes between pure blocks of small change trials
(that would not elicit this putative strategy) and blocks in which
approximately equal numbers of changes were large and small.

Finally, only two of 16 subjects successfully identified the
dominant quadrant in response to a query about whether any
location had been more likely to contain a changed item, and half
the subjects reported not to have noticed any probability manipu-
lation. However, when we administered a more sensitive forced-
choice test, subjects were able to guess the correct quadrant at
above chance levels (11 of 16 subjects), �2(1) � 12.25, p � .01.
Yet once again, those who correctly identified the dominant quad-
rant in the forced-choice test did not show a larger bias effect (n �
11, M � 9%, SD � .15) than those who did not (n � 5, M � 13%,
SD � .08), t(14) � –0.55, p � .59. Thus, although subjects could
access some explicit knowledge about the probability manipula-
tion, that knowledge was unlikely to have motivated a voluntary
strategy to orient towards the dominant quadrant. Crucially, no
subject reported any overt strategy to bias encoding towards the
dominant quadrant, just as in all of the previous studies. In addi-

Figure 6. The probability of correct comparison (C) given that the item
is stored in the dominant and nondominant quadrants of Experiment 3.
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tion, the combined data from the neutral condition of Experiment
2 (when a reliable bias was already established) and Experiment 3
also showed that subjects who could correctly guess the dominant
quadrant (n � 23, M � .11, SD � .16) did not show a larger bias
effect than those who could not (n � 13, M � .09, SD � .16),
t(34) � 0.35, p � .73. Thus, consistent with the previous studies,
the overall results argue against the hypothesis that the observers’
explicit knowledge of the probability manipulation motivated a
voluntary encoding bias towards the dominant quadrant.

General Discussion

A growing body of evidence suggests that the ability to exert
voluntary control over what is encoded into working memory is
strongly intertwined with the effective capacity of that system
(Awh et al., 2006; Engle, 2002; Kane et al., 2001; Vogel et al.,
2005). In the present work, we demonstrate and further character-
ize how statistical regularities in target position can also exert an
influence on which items will gain entry into this highly capacity-
limited system. When targets were more likely to appear in a
specific quadrant of the display, observers were more likely to
encode items from that region into working memory. This is in
accord with previous research showing a facilitated deployment of
attention toward locations where targets are more probable, en-
hancing the speed or quality with which single targets are pro-
cessed, and biasing which items are encoded into memory. (Beck
et al., 2008; Olson et al., 2005).

The encoding bias in the current study was observed in five
independent samples of subjects, even though subjects were not
explicitly informed about the probability manipulation. A surprisingly
small number of participants were able to articulate the nature of
the probability manipulation (nine out of 84), and none reported
any kind of explicit strategy to preferentially encode items from
the dominant quadrant. Nevertheless, forced-choice tests in Exper-
iments 2 and 3 provided clear evidence of above-chance discrim-
ination of the dominant quadrant; thus, observers were able to
access some explicit knowledge about the bias in target position.
This fact notwithstanding, multiple pieces of evidence argue
against the hypothesis that the observed encoding bias was a
product of a voluntary bias in observers’ encoding strategies.
Perhaps the most central piece of evidence against a voluntary
encoding bias is that none of the 84 subjects reported a voluntary
encoding bias towards the dominant quadrant. In addition, when
observers were split by virtue of whether they succeeded or failed
in identifying the dominant quadrant during the forced-choice test,
the bias effect was no larger for subjects who had succeeded than
for those who had not. Similarly, when the data were sorted by
whether observers had shown a bias towards the dominant quad-
rant (as operationalized by better change detection in the dominant
quadrant), those who showed the bias did not perform better on the
forced-choice test. Finally, it should be emphasized that the mere
presence of some explicit knowledge does not provide strong
evidence that that knowledge elicited a voluntary strategy on the
part of observers. That is, although it is prudent to keep in mind
that explicit knowledge may be present in various statistical learn-
ing procedures, there is also strong evidence that statistical learn-
ing may influence cognitive processing in a nonstrategic fashion.
These considerations motivate our hypothesis that the encoding
bias was a product of the same kind of statistical learning opera-

tions that previous research has shown to influence the deployment
of visual attention and mnemonic resources.

This kind of dissociation between encoding bias and the explicit
goals of the observer is a striking possibility in the context of
visual working memory, to the extent that this “online” memory
system is often seen as synonymous with the current contents of
awareness (e.g., Cowan, 1988; Jonides et al., 2008; Oberauer,
2002). Nevertheless, the plausibility of this hypothesis is high-
lighted by a substantial body of previous research showing that
statistical regularities can be apprehended and used to guide be-
havior—whether intentionally or not—during sequence learning
(Frensch, 1998; Lewicki, Czyzewska, & Hoffman, 1987; Lewicki,
Hill, & Bizot, 1988; Nissen & Bullemer, 1987), visual search
(Chun, 2000; Chun & Jiang, 1998, 1999), temporal order judg-
ments (Turk-Browne, Junge, & Scholl, 2005), linguistic process-
ing (Gebhart, Aslin, & Newport, 2009), and task switching (Mayr
& Bryck, 2005). For instance, Lewicki et al. (1987) employed a
paradigm in which specific sequences of stimulus presentations
predicted the upcoming location of a target. Faster reaction times
at the predicted locations suggested that participants could benefit
from regularities in the order with which targets were presented,
although participants were unable to articulate such statistical
regularities. The present work suggests that a similar apprehension
of statistical regularities in target position may influence encoding
into visual working memory, and that this knowledge may be
applied without the explicit intent of the observer.

Finally, Experiment 3 revealed that although items in the dom-
inant quadrant were more likely to be stored in working memory,
the resolution of those representations was no better than for items
encoded from the other quadrants. These findings suggest that
statistical learning biased encoding into working memory in a
discrete slot-based fashion, rather than causing an asymmetric
division of resources between items stored from the dominant and
nondominant quadrants. This account of how statistical learning
biases encoding into working memory makes a clear prediction.
Specifically, this biasing effect should be evident only when the
total number of items to be stored exceeds the working memory
capacity of the observer. This is because biases in the selection of
items to be stored—as opposed to biases in the relative quality of
a given representation—should not influence performance when
there is sufficient capacity to store all the relevant items.

Although it would be premature to assume that statistical learn-
ing and voluntary selection are equivalent with respect to flexible
versus discrete modes of resource allocation, we note that previous
studies that have examined the flexibility of voluntary resource
allocation in visual working memory have yielded similar conclu-
sions. Zhang and Luck (2008) used a cueing procedure in which
observers were informed that a specific item in a three-item
display was most likely to be probed at the end of the trial. Their
results showed that the cued items were more likely to be stored in
working memory, but they found only modest variations in reso-
lution that could not disconfirm a slot-based account. Likewise,
Barton et al. (2009) examined whether more complex items in a
display command a disproportionate share of resources as pre-
dicted by flexible resource models. This was accomplished by
measuring whether resolution for a given item was affected by
large variations in the complexity of the other-to-be-stored items,
as predicted by the hypothesis that more complex items demand a
larger share of a central resource pool. Inconsistent with a flexible
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resource account, mnemonic resolution for a given item was com-
pletely insensitive to the complexity of the other items to be stored.
Thus, neither valid precues that clearly specify object priority, nor
large disparities in information load across items were able to elicit
evidence of asymmetric resource allocation across stored items.
Instead, these strong manipulations had a selective influence on the
probability of storage, consistent with a discrete slot-based model
of resource allocation.

Our results suggest that statistical learning may help to
optimize the allocation of limited resources in working memory
by biasing encoding towards behaviorally relevant items. In the
current experiments, this bias enhanced performance by raising
the probability that the changed item was encoded into memory.
Thus, while the selection of which items to store from supra-
span displays may typically be relatively haphazard,3 statistical
regularities in target position may shape this process by high-
lighting a subset of the to-be-stored items. Given the evidence
we have presented that the bias may not have been voluntary in
nature, it is possible that statistical learning provides one mech-
anism for easing the burden on a highly capacity limited system
for voluntary selection and storage in working memory. As
Lewicki, Hill, and Czyzewska (1992) pointed out, statistical learn-
ing processes are sensitive to structurally complex patterns that
may be difficult if not impossible to apprehend solely through
consciously controlled learning processes. For example, Lewicki
et al. (1987) found evidence that observers unconsciously acquired
knowledge about sequences of locations that were described in
terms of a four-way interaction (Lewicki et al., 1992). The fact that
statistical learning is sensitive to such complex patterns in the
observers’ experience suggests that this process may provide a
powerful complement to voluntary control processes that are not
only highly limited in capacity, but which may also be less
sensitive to informative regularities in visual experience.

Finally, we highlight a number of remaining questions regarding
the boundary conditions of the statistical learning effects documented
in the present work. For instance, further work is needed to determine
the specificity of the interactions between statistical learning and
mnemonic encoding. Is encoding into working memory biased only
by patterns that are behaviorally relevant to the observer (e.g., Turk-
Browne, Junge, & Scholl, 2005), or would encoding be biased to-
wards any region that consistently contained salient or attention-
capturing events, regardless of whether those events were relevant to
the ongoing goals of the observer? Would biases obtained with one set
of stimuli also influence encoding patterns with novel stimuli or a new
task context (Jiang & Song, 2005a, 2005b)? In the present studies,
we manipulated the spatial position of the change target; would
similar effects be observed if similar manipulations were ap-
plied to nonspatial dimensions such as color and shape (e.g.,
Chun & Jiang, 1999; Fiser & Aslin, 2001; but see also Beck et
al., 2008)? Such explorations of the boundary conditions of this
bias effect may provide a richer understanding of how statistical
learning influences the deployment of limited resources for
storage in working memory.

3 Unless bottom-up stimulus characteristics such as perceptual grouping
(Woodman, Vecera, & Luck, 2003) or attentional capture (Schmidt, Vogel,
Woodman, & Luck, 2002) are at work.
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