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Three questions have been prominent in the study of visual working memory limitations: (a) What is the
nature of mnemonic precision (e.g., quantized or continuous)? (b) How many items are remembered? (c)
To what extent do spatial binding errors account for working memory failures? Modeling studies have
typically focused on comparing possible answers to a single one of these questions, even though the result
of such a comparison might depend on the assumed answers to both others. Here, we consider every
possible combination of previously proposed answers to the individual questions. Each model is then a
point in a 3-factor model space containing a total of 32 models, of which only 6 have been tested
previously. We compare all models on data from 10 delayed-estimation experiments from 6 laboratories
(for a total of 164 subjects and 131,452 trials). Consistently across experiments, we find that (a)
mnemonic precision is not quantized but continuous and not equal but variable across items and trials;
(b) the number of remembered items is likely to be variable across trials, with a mean of 6.4 in the best
model (median across subjects); (c) spatial binding errors occur but explain only a small fraction of
responses (16.5% at set size 8 in the best model). We find strong evidence against all 6 documented
models. Our results demonstrate the value of factorial model comparison in working memory.
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The British statistician Ronald Fisher wrote almost a century
ago, “No aphorism is more frequently repeated in connection with
field trials, than that we must ask Nature few questions, or, ideally,
one question, at a time. The writer is convinced that this view is
wholly mistaken” (Fisher, 1926, p. 511). He urged the use of
factorial designs, an advice that has been fruitfully heeded since.
Less widespread but equally useful is the notion of factorially
testing models (for recent examples in neuroscience and psychol-
ogy, see Acerbi, Wolpert, & Vijayakumar, 2012; Daunizeau,
Preuschoff, Friston, & Stephan, 2011; Pinto, Doukhan, DiCarlo, &
Cox, 2009). Models often consist of distinct concepts that can be
mixed and matched in many ways. Comparing all models obtained
from this mixing and matching could be called factorial model

comparison. The aim of such a comparison is twofold: First, rather
than focusing on specific models, it aims to identify which values
(levels) of each factor make a model successful; second, in the
spirit of Popper (1959), it aims to rule out large numbers of poorly
fitting models. Here, we conduct for the first time a factorial
comparison of models of working memory limitations and achieve
both aims.

Five theoretical ideas have been prominent in the study of visual
working memory limitations. The first and oldest idea is that there
is an upper limit to the number of items that can be remembered
(Cowan, 2001; Miller, 1956; Pashler, 1988). The second idea is
that memory limitations can be explained as a consequence of
memory noise increasing with set size or, in other words, mne-
monic precision decreasing with set size (Palmer, 1990; Wilken &
Ma, 2004). Such models are sometimes called continuous-
resource or distributed-resource models, in which some continu-
ous sort of memory resource is related in a one-to-one manner to
precision and is divided across remembered items. In this article,
we mostly use the term precision, not resource, because it is more
concrete. The third idea is that mnemonic precision comes in a
small number of stackable quanta (Zhang & Luck, 2008). The
fourth idea is that mnemonic precision varies across trials and
items even when the number of items in a display is kept fixed
(Van den Berg, Shin, Chou, George, & Ma, 2012). The fifth idea
is that features are sometimes remembered at the wrong locations
(Wheeler & Treisman, 2002) and that such misbindings account
for a large part of (near-) guessing behavior in working memory
tasks (Bays, Catalao, & Husain, 2009). These five ideas do not
directly contradict each other and, in fact, can be combined in
many ways. For example, even if mnemonic precision is a non-
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quantized and variable quantity, only a fixed number of items
might be remembered. Even if mnemonic precision is quantized,
the number of quanta could vary from trial to trial.

All possible combinations of these model ingredients can be
organized in a three-factor (three-dimensional) model space (see
Figure 1). One factor is the nature of mnemonic precision, the
second the number of remembered items, and the third (not shown
in Figure 1) whether incorrect bindings of features to locations
occur. As we discuss below, combining previously proposed levels
of these three factors produces a total 32 models. Previous studies
considered either only a single model or a few of these models at
a time (e.g., Anderson & Awh, 2012; Anderson, Vogel, & Awh,
2011; Bays et al., 2009; Bays & Husain, 2008; Fougnie, Suchow,
& Alvarez, 2012a; Keshvari, Van den Berg, & Ma, 2013; Rouder
et al., 2008; Sims, Jacobs, & Knill, 2012; Van den Berg et al.,
2012; Wilken & Ma, 2004; Zhang & Luck, 2008).

Testing small subsets of models is an inefficient approach: For
example, if, in each article, two models were compared and the
most efficient ranking algorithm were used, then, on average,
log2(32!) � 118 articles would be needed to rank all of the models.
A second, more serious problem of comparing small subsets of
models is that it easily leads to generalizations that may prove
unjustified when considering a more complete set of models. For
example, on the basis of comparisons between one particular
noise-based model and one particular item-limit model, Wilken
and Ma (2004) and Bays and Husain (2008) concluded that work-
ing memory precision is continuous and there is no upper limit on
the number of items that can be remembered. Using the same
experimental paradigm (delayed estimation) but a different subset
of models, Zhang and Luck (2008) drew the opposite conclusion,
namely, that working memory precision is quantized and no more
than about three items can be remembered. They wrote, “This
result rules out the entire class of working memory models in
which all items are stored but with a resolution or noise level that
depends on the number of items in memory” (italics added; Zhang
& Luck, 2008, p. 233). These and other studies have all drawn
conclusions about entire classes of models (rows and columns in

Figure 1) based on comparing individual members of those classes
(circles in Figure 1).

Here, we test the full set of 32 models, as well as 118 variants
of these models, on 10 data sets from six laboratories. We propose
to compare model families instead of only individual models to
answer the three questions posed above. Our results provide strong
evidence that memory precision is continuous and variable and
suggest that the number of remembered items is variable from trial
to trial and substantially higher than previously estimated item
limits. In addition, although we find evidence for spatial binding
errors in working memory, they account for only a small propor-
tion of responses. Finally, the model ranking that we find is not
only highly consistent across experiments but also with previous
literature. Hence, conflicts in previous literature are only apparent
and are resolved when a more complete set of models are tested.
Our results highlight the need to factorially test models.

Experiment

Task

In recent years, a popular paradigm for studying the limitations
of working memory has been the Wilken and Ma (2004) delayed-
estimation paradigm, a multiple-item working memory task that
was inspired by a single-item attention task first used by Prin-
zmetal, Amiri, Allen, and Edwards (1998). In this task, the ob-
server is shown a display containing one or multiple items, fol-
lowed by a delay, followed by a response screen on which the
observer estimates the remembered feature value at a marked
location in a near-continuous response space (see Figure 2). The
near-continuous response stands in contrast to change detection,
where the observer’s decision is binary.

Data Sets

We gathered 10 previously published delayed-estimation data
sets collected in six different laboratories, made available by the
respective authors (Anderson & Awh, 2012; Anderson et al., 2011;
Bays et al., 2009; Rademaker, Tredway, & Tong, 2012; Van den
Berg et al., 2012; Wilken & Ma, 2004; Zhang & Luck, 2008; see
Table 1). Together, these data sets comprise 164 subjects and
131,452 trials and cover a range of differences in experimental
details. The data are available online as a benchmark data set
(http://www.cns.nyu.edu/malab/dataandcode.html).

Theoretical Framework

Our model space is spanned by the three model factors men-
tioned above: the probability distribution of mnemonic precision,
the probability distribution of the number of remembered items,
and the presence of spatial binding errors. For the distribution of
mnemonic precision, we consider four modeling choices or factor
levels:

Level 1: Precision is fixed (fixed precision or FP). This model
was originally proposed in the context of the change detection
paradigm and it was assumed that mnemonic noise is negli-
gibly low, thus precision was not only assumed fixed but also
near infinite (Luck & Vogel, 1997; Pashler, 1988). Because
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Figure 1. Schematic overview of models of working memory, obtained
by factorially combining current theoretical ideas.
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that seems to be an unrealistic assumption in the context of
delayed estimation experiments, here we test a more general
version of the model, in which precision can take any value
but is still fixed across items, trials, and set sizes. Thus, for
each subject, a remembered item can only have one possible
value of precision.

Level 2: Precision is quantized in units of a fixed size (slots
plus averaging or SA; Zhang & Luck, 2008). Zhang and Luck
(2008) use the analogy of standardized bottles of juice, each
of which stands for a certain fixed amount of precision with
which an item is remembered. For example, if five precision
quanta (slots) are available, then among eight items, five will
each receive one quantum and three items will be remem-
bered with zero precision, but among three items, two of them
will receive two quanta each and one item will receive one
quantum. According to this model, precision cannot take
intermediate values, for example, corresponding to 1.7
quanta.

Level 3: Precision is a graded (continuous) quantity and, at a
given set size, equal across items and trials (equal precision
or EP; Palmer, 1990; Wilken & Ma, 2004). In the realm of
attention, this model was first conceived by Shaw (Shaw,
1980), who called it the sample-size model. Precision can
depend on set size, typically decreasing with increasing set

size. If precision does not depend on set size, then this
modeling choice reduces to the FP modeling choice above.

Level 4: Precision is a continuous quantity and, even at a
given set size, can vary randomly across items and trials
(variable precision or VP; Fougnie et al., 2012a; Van den
Berg, et al., 2012). This model was developed to address
shortcomings of the EP model. On any given trial, different
items will be remembered with different precision. The mean
precision with which an item is remembered will, in general,
depend on set size. This is a doubly stochastic model: Preci-
sion determines the distribution of the stimulus estimate and
is itself also a random variable.

In the EP and VP models, we assume that precision (for VP,
trial-averaged precision) depends on set size in a power-law
fashion (Bays & Husain, 2008; Elmore et al., 2011; Keshvari et
al., 2013; Mazyar, Van den Berg, & Ma, 2012; Van den Berg et
al., 2012). Precision determines the width of the distribution of
noisy stimulus estimates. In practice, the power law on preci-
sion means that the estimates become increasingly noisy as set
size increases.

The second factor is the number of remembered items, which we
denote by K. The actual number of remembered items on a given
trial can never exceed the total number of items on that trial, N, and
is therefore equal to the minimum of K and N. Thus, K is, strictly
speaking, the number of remembered items only when it does not
exceed the number of presented items. For convenience, we usu-
ally simply refer to K as the number of remembered items. For the
second model factor, we consider the following levels:

Level 1: All items are remembered (K � �; Bays & Husain,
2008; Fougnie et al., 2012a; Palmer, 1990; Van den Berg, et
al., 2012; Wilken & Ma, 2004).

Level 2: The number of remembered items is fixed for a given
subject in a given experiment (K is an integer constant;
Cowan, 2001; Luck & Vogel, 1997; Miller, 1956; Pashler,
1988; Rouder et al., 2008).

Level 3: K varies according to a Poisson distribution with
mean Kmean.

Response

Stimuli

Delay

Figure 2. Example trial procedure in delayed estimation of color. Sub-
jects view a set of items and, after a brief delay, they are asked to report the
value of one item, for instance, by clicking on a color wheel.

Table 1
Details of the Experiments Whose Data Are Reanalyzed Here

ID Article Location Feature Set sizes
Eccentricity

(degrees)
Stimulus
time (ms)

Delay
(ms) Subjects

E1 Wilken & Ma, 2004 California Institute of Technology Color (wheel) 1, 2, 4, 8 7.2 100 1,500 15
E2 Zhang & Luck, 2008 University of California, Davis Color (wheel) 1, 2, 3, 6 4.5 100 900 8
E3 Bays et al., 2009 University College London Color (wheel) 1, 2, 4, 6 4.5 100, 500, 2,000 900 12
E4 Anderson et al., 2011 University of Oregon Orientation (360°) 1–4, 6, 8 Variable 200 1,000 45
E5 Anderson & Awh, 2012 University of Oregon Orientation (180°) 1–4, 6, 8 Variable 200 1,000 23
E6 Anderson & Awh, 2012 University of Oregon Orientation (360°) 1–4, 6, 8 Variable 200 1,000 23
E7 Van den Berg et al., 2012 Baylor College of Medicine Color (scrolling) 1–8 4.5 110 1,000 13
E8 Van den Berg et al., 2012 Baylor College of Medicine Color (wheel) 1–8 4.5 110 1,000 13
E9 Van den Berg et al., 2012 Baylor College of Medicine Orientation (180°) 2, 4, 6, 8 8.2 110 1,000 6
E10 Rademaker et al., 2012 Vanderbilt University Orientation (180°) 3, 6 4.0 200 3,000 6
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Level 4: K varies across trials according to a uniform distri-
bution between 0 and Kmax.

The latter two possibilities were inspired by recent suggestions
that K varies across trials (Dyrholm, Kyllingsbaek, Espeseth, &
Bundesen, 2011; Sims et al., 2012); we return to the exact proposal
by Sims et al. later. We label these levels -A, -F, -P, and -U,
respectively; for example, SA-P refers to the slots-plus-averaging
model with a Poisson-distributed number of remembered items.
Note that in all SA models, the number of remembered items is
equal to the number of quanta.

The third factor is the presence or absence of spatial binding
errors. In the models with spatial binding errors, subjects will
sometimes report a nontarget item. We assume that the probability
of a nontarget report is proportional to the number of nontarget
items. Assuming this proportionality keeps the number of free
parameters low and seems reasonable on the basis of the results of
Bays et al. (2009). The models with nontarget reports are labeled
-NT. For example, SA-P-NT is the slots-plus-averaging model
with a Poisson-distributed K and nontarget reports.

In all models, we assume that the observer’s report is not
identical to the stimulus memory but has been corrupted by re-
sponse noise.

Considering all combinations, we obtain a model space that
contains 4 � 4 � 2 � 32 models (see Figure 1). The six models
that are currently documented in the literature are FP-F (Pashler,
1988), EP-A (sample-size model; Palmer, 1990), EP-A-NT (Bays
et al., 2009), EP-F (slots plus resources; Anderson et al., 2011;
Zhang & Luck, 2008), SA-F (slots plus averaging; Zhang & Luck,
2008), and VP-A (variable precision; Fougnie et al., 2012a; Van
den Berg, et al., 2012).

The abbreviations used are listed in Table 2. We now describe
the mathematical details of all models.

Estimate and Response Distributions

We consider tasks in which the observer is asked to estimate a
feature s of a target item. In all experiments that we examine, the
feature (orientation or color on a color wheel) and the observer’s
estimate of the feature have a circular domain. For convenience,
we mapped all feature domains to [0,2�) radians in all equations.
In all models, we assume, following Wilken and Ma (2004),
that the observer’s estimate of the target, ŝ, follows a Von Mises
distribution (a circular version of the normal distribution),
centered on the target value, s, and with a concentration param-
eter, �:

p(ŝ | s) �
1

2�I0(�)
e�cos(ŝ�s) � VM(ŝ;s, �), (1)

where I0 is the modified Bessel function of the first kind of order
0. We further assume in all models that the report r of this estimate
is corrupted by Von Mises–distributed response noise,

p(r | ŝ) �
1

2�I0(�r)
e�rcos(r�ŝ) � VM(r;ŝ, �r).

Relationship Between Mnemonic Precision and
Stimulus Noise

To mathematically specify mnemonic precision, we need a
measure that can be computed for a circular domain; thus, the
inverse of the usual variance is inadequate. Ideally, this measure
should have a clear relationship with some form of neural resource.
Therefore, we follow earlier work (Van den Berg et al., 2012) and
express mnemonic precision in terms of Fisher information, de-
noted J. Fisher information is a general measure of how much
information an observable random variable (here, ŝ) carries about
an unknown other variable (here, s). Moreover, it reduces to
inverse variance in the case of a normally distributed estimate.
Fisher information is proportional to the amplitude of activity in a
neural population encoding a sensory stimulus (Paradiso, 1988;
Seung & Sompolinsky, 1993). Hence, J is a sensible measure of
memory precision. For a Von Mises distribution (see Equation 1),
J is directly related to the concentration parameter, �, through

J � �
I1(�)

I0(�)
, (2)

where I1 is the modified Bessel function of the first kind of order
1 (Van den Berg et al., 2012). We denote the inverse relationship
by � � �(J). We consistently use the definition of J and Equation
2 in all models.

FP Models With Fixed K

The classic model of working memory has been that memory
accuracy is very high and errors arise only because a limited
number of slots, K, are available to store items (Cowan, 2001;
Miller, 1956; Pashler, 1988). This model was originally proposed
in the context of the change detection paradigm, in which it was
assumed that the memory of a stored item is essentially perfect
(very high precision). Because this appears to be unrealistic in the
context of delayed estimation, we give the model a bit more

Table 2
Abbreviations Used to Label the Models

Abbreviation Meaning

FP- Fixed precision: The precision of a remembered
item is fixed across items, trials, and set sizes

SA- Slots plus averaging: The precision of a
remembered item is provided by discrete
slots and is thus quantized

EP- Equal precision: The precision of a remembered
item is equal across items and trials (but
depends in a power law fashion on set size)

VP- Variable precision: The precision of a
remembered item varies across items and
trials (mean precision depends in a power
law fashion on set size)

-A- All items are remembered
-F- There is a fixed number of remembered items
-P- The number of remembered items varies across

trials and follows a Poisson distribution
-U- The number of remembered items varies across

trials and follows a uniform distribution
-NT Nontarget reports are present; the proportion of

trials in which the subject reports a nontarget
item is proportional to set size minus 1
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freedom by letting precision be a free parameter. Precision in this
model is fixed across items, trials, and set sizes. Therefore, we call
it the fixed-precision model (denoted FP). The probability that the
target is remembered in an N-item display would equal K/N if K �
N and 1 otherwise. When K � N, all items are remembered and the
target estimate is a Von Mises distribution,

p(ŝ | s) � VM(r;s, �),

where parameter � controls the precision with which items are
remembered. When K � N, the target estimate follows a mixture
distribution consisting of a Von Mises distribution (representing
trials on which the target is remembered) and a uniform distribu-
tion (representing trials on which the target is not remembered),

p(ŝ | s) �
K

N
VM(ŝ;s, �) � �1 �

K

N� 1

2�
.

Including response noise, the response distributions becomes a
convolution of two Von Mises distributions and evaluates to

p(r | s) �
K

N

I0���
2

� �r
2 � 2��rcos(r � s)�

2�I0(�)I0(�r)
� �1 �

K

N� 1

2�
,

(3)

where parameter �r controls the amount of response noise.1

Note that K can only take integer values. This is because we
model individual-trial responses, and on an individual trial, the
number of remembered items can only be an integer value. When
averaging K across subjects or trials, it may take noninteger values.
Also note that K is independent of set size in all models, except for
model variants we consider in the section Equal and Variable-
Precision Models With a Constant Probability of Remembering an
Item.

SA Models With Fixed K

In the SA models, working memory consists of a certain number
of slots, each of which providing a finite amount of precision that
we refer to as a precision quantum. When K � N, K items are
remembered with a single quantum of precision and the other
items are not remembered at all. Hence, the target estimate follows
a mixture of a Von Mises and a uniform distribution,

p(ŝ | s) �
K

N
VM(ŝ;s, �1) � �1 �

K

N� 1

2�
,

where �1 is the concentration parameter of the noise distribution
corresponding to the precision obtained with a single quantum of
precision, which we denote J1. With response noise, the response
distribution is given by

p(r | s) � �
0

2�

p(r | ŝ)p(ŝ | s)dŝ

��
0

2�

VM(r;ŝ, �r)�K

N
VM(ŝ;s, �1) � �1 �

K

N� 1

2��dŝ

�
K

N

I0���1
2 � �r

2 � 2�1�rcos(r � s)�
2�I0(�1)I0(�r)

� �1 �
K

N� 1

2�
.

When K 	 N, at least one item will receive more than one quantum

of precision. In our main analyses, we assume that quanta are
distributed as evenly as possible (a variant in which this is not the
case is considered in the subsection Model Variants Under Re-
sults). Then, the target is remembered with one of at most two
values of precision, Jlow or Jhigh, with corresponding concentration
parameters �low and �high. For example, when N � 3 and K � 4,
three items are remembered with one quantum of precision (Jlow �
J1) and one item is remembered with two quanta (Jhigh � 2J1).
Hence, the estimate follows a mixture of two Von Mises distribu-
tions:

p(ŝ | s) �
K mod N

N

1

2�I0(�high)
e�highcos(ŝ�s)

� �1 �
K mod N

N � 1

2�I0(�low)
e�lowcos(ŝ�s).

With response noise, the response distribution for K 	 N is

p(r | s) �
K mod N

N

I0(�c,high)

2�I0(�high)I0(�r)

��1 �
K mod N

N � I0(�c,low)

2�I0(�low)I0(�r)
,

with

�c,high � ��high
2 � �r

2 � 2�high�rcos(ŝ � s),

�c,low � ��low
2 � �r

2 � 2�low�rcos(ŝ � s).

EP Models With Fixed K

The main idea behind the EP models is that precision is a graded
(continuous) quantity that is equal for all K remembered items. We
deliberately do not state that “resource is equally distributed over
K items” because resource and precision might not be the same
thing (precision will be affected by bottom-up factors such as
stimulus contrast). Moreover, this would suggest a set size–
independent total, which is unnecessarily restrictive. When all
items are always remembered, N can be substituted for K. We

1 In this model, memory noise is indistinguishable from response noise,
because they have identical effects on the model predictions. In very good
approximation, these two parameters can be replaced by a single parame-
ter. If we were dealing with Gaussian instead of Von Mises noise distri-
butions, this statement would have been exact, because the total variance in
the response would be the sum of the memory variance and the response
variance. Because we are dealing with Von Mises distributions and Equa-
tion 3 shows that the convolution of two Von Mises distributions is not
Von Mises, we verified whether our simplification was justified by running
both versions of the FP models: with memory and response noise modeled
as two separate parameters and with both forms of noise together modeled
using a single Von Mises distribution with a single concentration param-
eter. The maximum likelihood of the former was higher than that of the
latter by only (3.49 
 0.78) · 10�2 (mean and standard error across subjects
and models). Therefore, in the FP models, we approximate the factor after K/N
in Equation 3 by a Von Mises distribution with a single concentration param-
eter �, which incorporates both memory and response noise. The advantages of
doing so are (a) in model comparison, the FP models will not be unduly penalized
for having a redundant parameter, and (b) the estimate of the combined concen-
tration parameter will be more reliable than the estimates of the individual con-
centration parameters would be.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

128 VAN DEN BERG, AWH, AND MA



assume that the precision per item, denoted J, follows a power-law
relationship in N, J � J1N�, with J1 and � as free parameters.
When � is negative, a larger set size will cause an item to be
remembered with lower precision and the error histogram will
be wider. (When fitting the models, we did not constrain � to be
negative, but all maximum-likelihood estimates turned out to be
negative.) Note that J1 stands for the precision with which a lone
item is remembered, which is different from what we meant by J1

in the SA models, where it stands for the precision provided by a
single slot. When K � N, the response distribution becomes, in a
way, similar to the SA model discussed above:

p(r | s) �
I0���

2
� �r

2 � 2��rcos(r � s)�
2�I0(�r)I0(�)

,

with � � �(J1N�). When K � N, the response distribution is again
a mixture distribution:

p(r | s) �
K

N

I0���2 � �r
2 � 2��rcos(r � s)�

2�I0(�r)I0(�)
� �1 �

K

N� 1

2�
,

with � � �(J1K�).

VP Models With Fixed K

The VP models assume, like the EP models, that mnemonic
precision is a continuous variable (instead of quantized, e.g., in the
SA model) but also, unlike the EP models, that it varies randomly
across items and trials even when set size is kept fixed. This
variability is modeled by drawing precision for each item from a
gamma distribution with a mean J̄ � J̄1N

� (when N � K; J̄ �
J̄1K

� otherwise) and a scale parameter . This implies that the total
precision across items also varies from trial to trial and has no hard
upper limit (the sum of gamma-distributed random variables is
itself a gamma-distributed random variable). The target estimate
has a distribution given by averaging the target estimate distribu-
tion for given J, over J:

p(ŝ | s;J̄, 	) � �1 �
K

N� 1

2�
�

K

N� p(ŝ | s;J)p(J | J̄;	)dJ

��1 �
K

N� 1

2�
�

K

N� VM�ŝ;s, 
(J)�Gamma(J;J̄, 	)dJ.

No analytical expression exists for this integral, and we therefore
approximated it using Monte Carlo simulations. Response noise
was added in the same way as in the other models.

Models With K � �

In the FP and SA model variants with K � � (infinitely many
slots), denoted FP-A and SA-A, all items are remembered and their
estimates are corrupted by a single source of Von Mises–
distributed noise. The EP and VP variants with K � �, which we
call the EP-A and VP-A models, are equal to the EP and VP
models with a fixed K equal to N, for which the response distri-
butions were given above.

Models With a Poisson-Distributed K

Predictions of the FP, SA, EP, and VP models in which K is
drawn on each trial from a Poisson distribution with mean Kmean

were obtained by first computing predictions of the corresponding
models with fixed K and then taking a weighted average. The
weight for each value of K was equal to the probability of that K
being drawn from a Poisson distribution with a mean Kmean.

Models With a Uniformly Distributed K

Predictions of the FP, SA, EP, and VP models in which K is
drawn on each trial from a discrete uniform distribution on
[0, Kmax] were obtained by averaging predictions of the corre-
sponding models with fixed K, across all values of K between
0 and Kmax.

Models With Nontarget Responses

Bays and colleagues have proposed that a large part of (near-)
guessing behavior in delayed-estimation tasks can be explained as
a result of subjects sometimes reporting an item other than the
target, due to spatial binding errors (Bays et al., 2009). They do not
specify the functional dependence of the probability of a nontarget
report on set size. Here, we assume that the probability of a
nontarget response, pNT, is proportional to the number of nontarget
items, N – 1: pNT � min[�(N � 1), 1], which seems to be a
reasonable approximation to the findings reported by Bays et al.
(2009; see their Figures 3e and 3f). Predictions of the models with
nontarget responses were computed using the predictions of the mod-
els without such responses. If p(r | s) is the response distribution in a
model without nontarget responses, then the response distribution of
its variant with nontarget responses was computed as

pwith nontarget(r | s) � (1 � pNT)p(r | s1) �
pNT

N � 1�i�2

N

p(r | si),

(4)

where s1 is the feature value of the target item and s2, . . . sN are the
feature values of the nontarget items. In models in which K items are
remembered, Equation 4 could be written out as a sum of four terms,
corresponding to the following four scenarios: the target item is
reported and was remembered, the target item is reported but was not
remembered, a nontarget item is reported and was remembered, and
a nontarget item is reported but was not remembered.

Methods

Model Fitting

For each subject and each model, we computed maximum-
likelihood estimates of the parameters (see Table A1 in the Ap-
pendix) using the following custom-made evolutionary (genetic)
algorithm:

1. Draw a population of M � 512 parameter vectors from
uniform distributions. Set generation count i to 1.

2. Make a copy of the parameter vectors of the current
population and add noise.

3. Compute the fitness (log likelihood) of each parameter
vector in the population.
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4. If M 	 64, decrease M by 2%.

5. Remove all but the M fittest parameter vectors from the
current population.

6. Increase i with 1. If i � 256, go back to Step 2. Other-
wise, stop.

After this algorithm terminates, the log likelihood of the parame-
ters of the fittest individual in the final population was used as an
estimate of the maximum parameter log likelihood.

Because of stochasticity in drawing parameter values and pre-
cision values (in the VP models), the output of the optimization
method will vary from run to run, even when the subject data are
the same. To verify the consistency of the method, we examined
how much the estimated value of the maximum log likelihood
varied when running the evolutionary algorithm repeatedly on the
same data set. For each model, we selected 10 random subjects and
ran the evolutionary algorithm 10 times on the data of each of
these subjects. We found that the estimates of the maximum log
likelihood varied most for the VP-U-NT model, but even for that
model, the standard deviation of the estimates was only 0.445 

0.080 (mean 
 standard error). Averaged across all models, the
standard deviation was 0.110 
 0.028, which turns out to be
negligible in comparison with the differences between the models.

Although this indicates that the optimization method is consistent
in its output, it is still possible that it is inaccurate, in the sense that it
may return biased estimates of the log likelihood. To verify that this
was not that case, we also estimated the error in the maximum log
likelihood returned by the evolutionary algorithm. We generated 10
synthetic data sets (set sizes 1, 2, 3, 4, 6, and 8; 150 trials per set size)
with each FP, SA, and EP model, using maximum-likelihood param-
eter values from randomly selected subjects. To get an estimate of the
true maximum of the likelihood function, we used Matlab’s fmin-
search routine with initial parameters set to the values that were used
to generate the data. This avoided convergence into local minima, as
it may be expected that the maximum of the likelihood function lies
very close to the starting point. Defining the maximum likelihood
returned by fminsearch as the true maximum, we found that the
absolute error in the maximum likelihood returned by the evolution-
ary algorithm was, on average, 0.024 
 0.006%; the maximum error
across all cases was 0.59%. As this error in maximum-likelihood
estimates is much smaller than the differences in maximum likelihood
between models (as shown below), we consider it negligible. Note
that this test could not be done for the VP models, because fminsearch
does not converge when the objective function is stochastic. However,
because the evolutionary algorithm works the same way for all
models, we have no reason to doubt that it also worked well on the VP
models.

Model Comparison

Complex models generally fit data better than simple models but
at the cost of having additional parameters. The art of model
comparison consists of ranking models in such a way that good-
ness of fit is properly balanced against model complexity. When
penalizing models too harshly for complexity, results will be
biased toward simple models; when penalizing too little, results
will be biased toward complex models. Two common penalty-
based model comparison measures are the Akaike information

criterion (AIC; Akaike, 1974) and the Bayesian information crite-
rion (BIC; Schwarz, 1978). We assessed the suitability of these
two measures in the context of our 32 models by applying them to
synthetic data sets generated by the models (see the Model Re-
covery Analysis section in the Appendix for details). At the level
of individual synthetic data sets, AIC and BIC selected the correct
model in about 48.2% and 44.9% of the cases, respectively. At the
level of experiments (i.e., results averaged across 16 synthetic data
sets), however, AIC selected the correct model in 31 out of 32
cases, whereas BIC made nine mistakes, mostly because it favored
models that were simpler than the one that generated a data set.
The only selection mistake based on AIC values was that on the
EP-F-NT data, the SA-F-NT model was assigned a slightly lower
AIC value than the EP-F-NT model itself (�AIC � 0.85). On the
basis of these model recovery results, we decided to use AIC for
all of our model comparisons. We cross-checked the AIC-based
results by comparing them with results based on computing Bayes
factors and found that these methods gave highly consistent out-
comes (see the Appendix).

Summary Statistics

Although AIC values are useful to determine how well a model
performs with respect to other models, they do not show how well
the model fits the data in an absolute sense. To get an impression
of the absolute goodness of fit of the models, we visualized the
subject data and model predictions using several summary statis-
tics, as follows. For each subject and each model, we used the
maximum-likelihood estimates to generate synthetic data sets,
each comprising the same set sizes and number of trials as the
corresponding subject data set. We then fitted a mixture of a
uniform distribution and a von Mises distribution (Zhang & Luck,
2008) to each subject’s data and the corresponding model-
generated data at each set size separately,

p(r | s) � wUVMVM(r;s, �UVM) � (1 � wUVM)
1

2�
,

where s is the target value. This produced two summary statistics
per subject and set size: the mixture proportion of the Von Mises
component, denoted wUVM, and the concentration parameter of the
Von Mises component, denoted �UVM. We converted the latter to
circular variance, CVUVM, through the relationship

CVUVM � 1 �
I1(�UVM)

I0(�UVM)

(Mardia & Jupp, 1999). In addition, we computed the residual that
remains after subtracting the best fitting uniform–Von Mises mix-
ture from the subject data (Van den Berg et al., 2012).

The estimates of wUVM and �UVM may be biased when the
number of data points is low (Anderson & Awh, 2012). To make
sure that any possible bias of this sort in the subject data is
reproduced in the synthetic data, we set the numbers of trials in the
synthetic data sets equal to those in the subject data. Because
estimates of wUVM and �UVM thus obtained are noisy as a result of
the relatively low number of trials, we generated 10 different
synthetic data sets per subject and averaged the estimates of wUVM

and �UVM.
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One of us has previously argued for examining the correlation
between (a) an estimate of the inflection point in a two-piece
piecewise linear fit to CVUVM as a function of set size and (b) an
estimate of the probability of remembering an item at a given set
size as derived from wUVM (Anderson & Awh, 2012; Anderson et
al., 2011). The presence of a significant correlation was used to
argue in favor of a fixed number of remembered items (specifi-
cally, the EP-F model). There are three reasons why we do not
perform this analysis here. First, we have found that other models
(including the VP-A models) also predict significant correlations
between these two quantities (Van den Berg & Ma, in press).
Second, this correlation is far removed from the data: It is a
property of a fit (linear regression) of a parameter (inflection point)
obtained from a fit (piecewise linear function) to the set size
dependence of a parameter (CSDUVM) obtained from a fit
(uniform–Von Mises mixture) to the data. The value of the corre-
lation, either for model comparison or as a summary statistic,
hinges on the validity of the assumptions made in the intermediate
fits, and we have found that the uniform–Von Mises mixture fit is
not an accurate description of the error histograms (see the Results
section). Third, more generally, there is no need to make additional
assumptions to derive summary statistics if one’s goal is to com-
pare models. By comparing models on the basis of their likeli-
hoods as described above, one incorporates all claims a model
makes while staying as close to the raw data as possible.

Results

Comparison of Individual Models

Figure 3A depicts, for each subject, the AIC value of each
model relative to the AIC value of the most likely model for that
subject (higher values mean worse fits). Most models perform
poorly and only a few perform well consistently. To quantify the
consistency of model performance across subjects, we ranked, for
each subject, the models by AIC and then computed the Spearman
rank correlation coefficient between each pair of subjects. The
correlation was significant (p � .05) for 99.5% of the 13,336
comparisons, with an average correlation coefficient of 0.78
(SD � 0.14), indicating strong consistency across subjects.

The individual goodness-of-fit values shown in Figure 3A can
be summarized in several useful ways. For each experiment, we
computed the AIC of each model relative to the best model in that
experiment, averaged over all subjects in that experiment (see
Figure 3B).2 The visual impression is one of high consistency
between experiments; indeed, the Spearman rank correlation co-
efficient between pairs of experiments was significant for all 45
comparisons (p � 10�5), with a mean of 0.896 (SD � 0.061; see
Table 3).

Moreover, as the numbers within the figure indicate, with one
minor exception, our ranking is consistent with all rankings in
previous studies, each of which tested a small subset of the 32
models.3 Somewhat surprisingly, this indicates high consistency
rather than conflict among previous studies; the disagreements
were only apparent, caused by drawing conclusions from incom-
plete model comparisons. For example, the findings presented by
Zhang and Luck (2008; see E2 in Figure 3) are typically consid-
ered to be inconsistent with those presented by, for example, Van
den Berg et al. (2012; E7–9 in Figure 3), as these articles draw

opposite conclusions. However, Figure 3B shows that their find-
ings are consistent when a more complete model space is consid-
ered.

Next, we ranked the models by their AIC values minus the AIC
value of the VP-P-NT model, averaged across subjects (see Figure
3C). The top ranks are dominated by members of the VP and NT
model families. If we were to use a rejection criterion of 9.2
(which corresponds to a Bayes factor of 1:100 if two models have
the same number of free parameters and is considered decisive
evidence on Jeffreys’s, 1961, scale), all six models that currently
exist in the literature (FP-F, SA-F, EP-A, EP-A-NT, EP-F, VP-A)
would be rejected, although one (VP-A) lies close to the criterion.
The ranking obtained by averaging AIC values is almost identical
to the one obtained from averaging the per-subject rankings (see
Figure 4).

Comparison of Model Families

The model ranking in Figure 3C suggests that variable precision
and the presence of nontarget responses are important ingredients
of successful models. To more directly address the three questions
of interest—that is, to determine what levels of each of the three
factors describe human working memory best—we define a model
family as the subset of all models that share a particular level of a
particular factor, regardless of their levels of the other factors. For
example, from the first factor, we can construct an FP, an EP, an
SA, and a VP model family, each of which has eight members. For
each model family, we computed for what percentage of subjects
all its members are rejected, as a function of the rejection criterion
(the difference in AIC with respect to the winning model for a
given subject).

Model Factor 1: Nature of mnemonic precision. Figure 5A
shows the results for the first model factor, the nature of mnemonic
precision. Regardless of the rejection criterion, the entire family of
FP models is rejected in the majority of subjects; for example, even
when using a rejection criterion of 20, all FP models would still be
rejected in 72.6% of the subjects. The rejection percentages of the
SA and EP model families are very similar to each other and lower
than those of the FP model family but still substantially higher than
those of the VP model family. The percentage of rejections under
a rejection criterion of 0 gives the percentage of subjects for whom
the winning model belongs to the model family in question. The
winning model is a VP model in 79.3% of subjects, while it is an
FP, SA, or EP model in only 1.8%, 7.3%, and 11.6% of subjects,
respectively. These results provide strong evidence against the
notion that memory precision is quantized (Zhang & Luck, 2008)
as well as the notion that memory precision is continuous and
equal between all items (Palmer, 1990).

2 Experiment E3 used three values of stimulus time. To verify that
stimulus time did not have a major effect on our model comparison results,
we also analyzed the three conditions separately. The Spearman rank
correlations on the model likelihoods were 0.99, 0.95, and 0.95, for 100
versus 500 ms, 100 versus 2,000 ms, and 500 versus 2,000 ms, respec-
tively. This shows that results were highly consistent between the three
stimulus times used.

3 Zhang and Luck (2008) reported that the SA-F model provided a better
description of their data than the EP-F model did. In the model comparison
presented in the present article, the ranks of these models are, strictly
speaking, reversed (see Figure 3C), but given how small the difference is,
it might be better to conclude that they are tied.
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Model Factor 2: Number of remembered items. Figure 5B
shows the rejection percentages for model families in the second
model factor, the number of remembered items. The models in which
the number of remembered items is uniformly distributed perform
worst. There is a clear separation between the other three model
families: models with a Poisson-distributed number of remembered
items are rejected less often than are models with a fixed number of
remembered items, which are rejected less frequently than are models

in which all items are remembered. Evidence is strongest for models
with a Poisson-distributed number of remembered items, suggesting
that the number of remembered items is highly variable. However,
this model family does not win as convincingly over the -F and -A
model families as the VP model wins over its competitors in Figure
5A, and a better model of the variability in the number of remembered
items might be needed. In addition, the mixed result may be due partly
to individual differences (e.g., some subjects trying harder to remem-
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Figure 3. Model comparison between individual models. A. Each column represents a subject, each row a
tested model. Cell color indicates a model’s Akaike information criterion (AIC) relative to that of the subject’s
most likely model (a higher value means a worse fit). In all panels, models are sorted by their subject-averaged
AIC values and boldface labels indicate previously proposed models. B. AIC values averaged across subjects
within an experiment, relative to that of the most likely model. For each experiment, numbers indicate the models
that were tested in the original study, ranked by their performance; all rankings are consistent with ours here. C.
AIC values minus that of the most likely model, averaged across all subjects. Error bars indicate 1 standard error
of the mean. See Table 2 for the model abbreviation key. The articles cited in the figure are the ones in which
the respective models were proposed.
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ber all items than others) as well as differences in experimental
designs (e.g., models in which all items are remembered are expected
to provide better fits when the mean set size in an experiment is low).

Model Factor 3: Presence of nontarget reports. Figure 5C
shows that the family of models with nontarget reports outper-
forms the family without nontarget reports, except when the re-
jection criterion is very close to zero. It has to be kept in mind that
the maximum likelihood of a model with nontarget reports can
never be less than that of the equivalent model without nontarget
reports. Consequently, a model with nontarget reports can only
lose because of the additional AIC penalty of 2 for the extra
parameter (because of noise in the maximum likelihood estimates,
the difference can sometimes be slightly larger, which is the reason
that the percentage of rejections is slightly higher than 0 for
rejection criteria greater than 2). If there were no nontarget reports
at all, we would expect the rejection percentage of the models with
nontarget reports in Figure 5C to be 100% when the rejection
criterion is small. Our finding that it is only 54.3% indicates that
spatial binding errors do indeed occur but may not be highly
prevalent. Additionally, it may be the case that the mixed result
reflects individual differences: Some subjects may be more prone
than others to making binding errors.

The suggestion that spatial binding errors do occur is supported
by our finding that for each of the 4 � 4 models formed by the first
two model factors, the variant that includes spatial binding errors
outperforms, on average, the variant that does not include them
(see Figure 6A). Also, the histogram of errors with respect to
nontarget items shows a peak at 0 (see Figure 6B), which is what
one would predict in the presence of spatial binding errors. In the
model that performed best in the model comparison (VP-P-NT),
the percentage of trials on which such errors are made increased
with set size, with a slope of 2.35% per item, for a total of 16.5%
at set size 8. To assess how well this model reproduces the
histogram of errors with respect to nontarget items, we generated
synthetic data for each subject using the same set sizes and
numbers of trials. The VP-P-NT model fits the peak at 0 reason-
ably well (see Figure 6B).

Finally, we examined how strongly the addition of nontarget
responses affects conclusions about the other two model factors.
We found that the Spearman rank correlation coefficient between
the orders of models with and without nontarget responses was
.950 
.006 (mean and standard error across subjects; p � .05 for

163 out of 164 subjects). Hence, although adding nontarget re-
sponses to the models improves their fits, they do not substantially
affect conclusions about the other two model factors.

Summary Statistics

Model comparison based on AIC values shows how well each
model is supported by the data compared with the other models, but
it does not provide information about what aspects of the data are
fitted well or poorly. To that end, we compared summary statistics
obtained from the subject data with those obtained from model-
generated data (see the Method section). Specifically, we fitted a
mixture of a uniform distribution and a Von Mises distribution (Zhang
& Luck, 2008) and obtained the weight to the Von Mises component,
wUVM, and the circular variance of the Von Mises component,
CVUVM (see the Method section). Figures 7 and 8 show wUVM,
CVUVM, and the residual left by the mixture fit (averaged over set
sizes), with corresponding predictions from the models without and
with nontarget reports, respectively. The fits of the FP models are very
poor because they predict no effect of set size on CVUVM. The EP-A
model, in which precision is equally allocated across all items, se-
verely overestimates both wUVM and CVUVM. Inclusion of nontarget
reports, leading to the EP-A-NT model, helps but not nearly enough.
Most models other than FP and EP-A reproduce wUVM and CVUVM

fairly well. For example, augmenting the EP model with a fixed
number of remembered items (EP-F and EP-F-NT) is a great im-
provement over the EP-A models. The SA-F and SA-P models and all
variable-precision models also account well for the first two summary
statistics.

The ability of many models to fit CVUVM implies that for the
purpose of distinguishing models based on behavioral data,
examining plateaus in the CVUVM function (Anderson & Awh,

Table 3
Spearman Correlation Coefficients Between Model Rankings
Across Experiments

Model E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 — .95 .84 .92 .85 .93 .86 .73 .91 .88
E2 — .93 .98 .92 .98 .93 .87 .96 .94
E3 — .94 .80 .90 .86 .95 .86 .85
E4 — .92 .97 .90 .87 .95 .94
E5 — .95 .90 .74 .95 .94
E6 — .89 .81 .96 .93
E7 — .88 .91 .93
E8 — .77 .82
E9 — .92
E10 —

Note. All correlations were significant with p � 10�5.

Rank

SA-A

1 5 10 15 20 25 30

FP-A
SA-A-NT
FP-A-NT

EP-A
FP-F
FP-U

EP-A-NT
SA-F
EP-F

FP-U-NT
FP-F-NT

SA-U
FP-P

EP-F-NT
SA-F-NT
FP-P-NT

EP-U
SA-U-NT

SA-P
EP-U-NT

EP-P
SA-P-NT

VP-U
VP-A
VP-F

EP-P-NT
VP-P

VP-U-NT
VP-A-NT
VP-F-NT
VP-P-NT

Figure 4. Model ranking. Per subject, we ranked models by their AIC
values. Shown are the median ranks (circles) and 95% confidence intervals
(bars). Models are listed in the same order as in Figure 3C. Boldface labels
indicate previously proposed models. See Table 2 for the model abbrevi-
ation key.
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2012; Anderson et al., 2011) is not effective. Variable-precision
models, including ones in which all items are remembered,
account for those plateaus as well as models in which no more
than a fixed number of items are remembered. In particular, it
is incorrect that the absence of a significant difference in
CVUVM (or any similar measure of the width of the Von Mises
component in the uniform–Von Mises mixture) between two
high set sizes “rules out the entire class of working memory
models in which all items are stored but with a resolution or
noise level that depends on the number of items in memory.”
(Zhang & Luck, 2008, p. 233). From among the models of that
class considered here, only the EP-A model can be ruled out in
this way.

The residual turns out to be a powerful way to qualitatively
distinguish the models: Many models predict a nearly flat
residual, which is inconsistent with the structured residual
observed in the data. Variable-precision models naturally ac-

count for the shape of this residual (Van den Berg et al., 2012):
Because of the variability in precision, the error distribution is
predicted to be not a single Von Mises distribution or a mixture
of a Von Mises distribution and a uniform distribution but an
infinite mixture of Von Mises distributions with different
widths, ranging from a uniform distribution (zero precision) to
a sharply peaked distribution (very large precision). Such an
infinite mixture distribution will be “peakier” than the best
fitting mixture of a single Von Mises and a uniform distribution
and will therefore leave a residual that peaks at zero.

To quantify the goodness of fit to the summary statistics, we
computed the R2 values of the means over subjects for wUVM,
CVUVM, and residual (averages are shown in Figures 7 and 8).
We found that model rankings based on these R2 values corre-
late strongly with the AIC-based ranking shown in Figure 3C.
The correlation is strongest when we use the R2 values of the
residuals, with a Spearman rank correlation coefficient of 0.84.
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Figure 5. Model comparison between model families (colors), for each model factor (panels). A. Percentage
of subjects for whom all models belonging to a certain model family (FP, SA, EP, or VP) are rejected, that is,
have an Akaike information criterion (AIC) higher than that of the winning model plus the rejection criterion on
the x-axis. For example, when we use a rejection criterion of 10, all models of the FP model family are rejected
in about 90% of subjects, all SA and EP models in about 50% of subjects, and all VP models in none of the
subjects. B. The same comparison executed for number of remembered items. C. The same comparison executed
for number spatial binding errors. See Table 2 for the model abbreviation key.
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When we use the R2 values of the wUVM and CVUVM to rank the
models, the correlation coefficients are 0.65 and 0.66, respec-
tively. All three correlations were significant with p � .001.
Although it is always better to perform model comparisons on
the basis of model likelihoods obtained from raw data rather
than summary statistics, these results suggests that a model’s
goodness of fit to the residual is a reasonably good proxy for
goodness of fit based on model AICs.

Parameter Estimates

Parameter estimates are given in Table A1 of the Appendix. For
the models that have been examined before, parameter estimates
found here are consistent with those earlier studies. For example,
in the SA-F model, we find K � 2.71 
 0.08, consistent with the
originating article about the SA-F model (Zhang & Luck, 2008),
and, in the VP-A model, we find � � �1.54 
 0.04, consistent
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with the originating article about that model (Van den Berg et al.,
2012). This shows consistency across experiments and suggests
that the minor differences in our implementations of some of the
models compared with the original articles (e.g., defining precision
in terms of Fisher information instead of CV in the SA models)
were inconsequential.

In the successful VP-P-NT model (as well as in the VP-P
model), however, the mean number of remembered items is esti-
mated to be very high (VP-P-NT: Mdn � 6.4). Because the highest
tested set size was 8, this estimated value means that under the

VP-F-NT model, on the vast majority of trials, even at set size 8,
all items were remembered. In the VP-F-NT model, we find K at
least equal to the maximum set size for 39.6% of the subjects.

Characterizing the Models in Terms of Variability

Our results suggest that variability is key in explaining working
memory limitations: The most successful models postulate vari-
ability in mnemonic precision across remembered items, in the
number of remembered items, or in both. Although different in
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nature, both types of variability contribute to the variability in
mnemonic precision for a given item across trials: An item could
be remembered with greater precision on one trial than on the next
because of random fluctuations in precision, because on this trial,
fewer items are remembered than on the next trial, or due to a
combination of both effects. Therefore, it is possible that the
unsuccessful models are, broadly speaking, characterized by hav-
ing insufficient variability in mnemonic precision for a given item
across trials.

To visualize this variability in each model, we reexpress it in
terms of the circular variance of the Von Mises distribution from
which a stimulus estimate is drawn, which we denote by CV. In
terms of the concentration parameter �, we have CV � 1 �
I1���
I0���

(Mardia & Jupp, 1999). (This should not be confused with

the circular variance of the Von Mises component in the uniform–
Von Mises mixture model, CVUVM.) Noiseless estimation and
random guessing constitute the extreme values of CV, namely,
CV � 0 and CV � 1, respectively. We computed CV predictions
for each model using synthetic data generated using median
maximum-likelihood parameter estimates across subjects. Figure 9
shows the predicted distributions of the square root of CV for each
model with nontarget responses. The FP models predict that CV
equals 0 or 1 on each trial; the SA-F-NT and EP-A-NT models
predict that the distribution consists of a small number of possible
values for CV; VP models postulate that the CV follows a con-
tinuous distribution. What the most successful models have in
common is that they have broad distributions over precision,
especially at higher set sizes. In the VP-P-NT model, variability in
K contributes to the breadth of this distribution. In the VP-U-NT
model (the only unsuccessful VP model), there is too much prob-
ability mass at CV � 1 when set size is low, that is, it predicts too
many pure guesses. Less successful models produce CV distribu-
tions that seem to be crude approximations to the broad distribu-
tions observed in the most successful models.

Model Variants

The strongest conclusion from the model family comparison is
that memory precision is continuous and variable (VP), instead of
fixed (FP), continuous and equal (EP), or quantized (SA). In the
context of the ongoing debate between the SA and VP models, our
findings strongly favor the latter. However, despite having tested
many more models than any working memory study before, we
still had to make several choices in the model implementations, for
example, regarding how to distribute slots over items (in SA
models) and what distribution to use for modeling variability in
precision (in VP models). It is possible that the specific choices we
made unfairly favored VP over SA models. To verify that this is
not the case, we examined how robust our findings are to changes
in these choices by testing a range of plausible variants of both SA
and VP models. In addition, we examine in this section how
important the response noise parameter is and whether adding a set
size independent lapse parameter improves the model fits.

SA models with random slots assignment. In the SA mod-
els, several possible strategies to assign slots to items exist. Al-
though Zhang and Luck (2008) did not explicitly specify which
strategy they had in mind, they did mention that standard deviation
in SA is inversely proportional to the square root of the number of

slots assigned to the target—this suggests an as-even-as-possible
strategy, which seems a plausible choice to us. However, it would
be interesting to consider an uneven distribution, as this would
introduce some variability in precision and might thus give better
results. We tested a variant of the SA model in which each slot is
randomly allocated to one of the items. Under this strategy, the
number of slots assigned to the target item follows a binomial
distribution.

The AIC values of the SA-A models are, by definition, identical
under even and random distribution of slots, because the distribu-
tion is irrelevant when the number of slots is infinite. It is inter-
esting that the AIC values of the SA-F and SA-U models decrease
substantially when slots are assigned randomly instead of evenly to
items, but those of the SA-P models remain nearly the same (see
Figure 10A, left). This suggests that the Poisson variability in
SA-P and SA-P-NT has roughly the same effect as the variability
that arises when assigning slots randomly. Overall, SA with ran-
dom slot assignment still performs poorly compared with the top
models: The AIC value of the very best SA model with random
slot assignment (SA-P-NT) is 12.2 
 1.0 points higher than that of
VP-P-NT. Moreover, the model family comparison remains
largely unchanged (see Figure 10A, right).

SA models with variability in precision. The EP-F and SA-F
models perform very similarly to each other, and so do their -NT
variants (see Figure 3A). The VP-F and VP-F-NT models account
for the data much better. This suggests that the inability of the
SA-F model to fit the data well is not due to the quantized nature
of precision but due to the lack of variability in precision. The key
notion of the standard SA-F model (Zhang & Luck, 2008) is that
each slot confers the same, quantized amount of resource or
precision to an item (the bottle of juice in their analogy). However,
some of the factors that motivate variability in precision in the
VP models (e.g., differences in precision across stimulus values
and variability in memory decay) may also be relevant in the
context of SA models. We therefore consider an SA variant in
which the total resource provided by the slots allocated to an
item serves as the mean of a gamma distribution, from which
precision is then drawn. This model is mathematically equiva-
lent to one in which the amount of precision conferred by each
individual slot is variable.

In the limit of large K, this variant of SA-F(-NT) becomes
identical to VP-A(-NT) with a power of �1. The intuition is that
if the number of precision quanta is very large, precision is
effectively continuous. We found that the AIC values of SA-F and
SA-F-NT indeed improve substantially relative to the original SA
models without variability in precision (see Figure 10B, left).
However, these improvements are not sufficient to make them
contenders for a top ranking (cf. Figure 3C): With the improve-
ment, their AIC values are still higher than that of the VP-P-NT
model by 15.7 
 1.2 and 7.99 
 0.62, respectively. Moreover, the
fits of the other six SA models hardly improve, suggesting that
variability in the number of slots (-P and -U variants) has a similar
effect as variability in slot precision. The rejection rates of SA
models with variable slot precision are almost as high as those of
the original SA models (see Figure 10B).

In a final variant, we combined the notion of unequal allo-
cation of slots (previous subsection) with variability in preci-
sion per slot. The improvements of these models compared with
the original SA models (see Figure 10C) are comparable to the
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improvements achieved by unequal allocation alone (cf. Figure
10A). Hence, SA models improve by adding variability in slot
precision on top of other sources of variability but still perform
poorly when compared with the VP model. With the improve-
ments, the AIC values of the SA-F, SA-P, SA-F-NT, and

SA-P-NT models are still higher than that the AIC value of the
VP-P-NT model by 22.4 
 1.7, 27.1 
 2.1, 12.6 
 1.0, and
13.5 
 1.1, respectively. Therefore, it is not simply a lack of
variability in precision that makes the SA models less success-
ful than the VP models.
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Taken together, we have tested 32 slots-plus-averaging model
variants and found that none of them describes the subject data as
well as some of the VP models do. This strongly suggests that the
essence of the SA models, the idea that memory precision is
quantized, is wrong.

VP models with power � �1. Why are the VP models so
successful, relative to the other models? One part of the answer
is clear: If one leaves out the variability in precision, the VP
models become EP models, which do not do well— hence,
variability in precision must be a key factor. However, com-
pared with the SA models, one could argue that the VP models
have more flexibility in the relationship between mean preci-
sion and set size. In the SA models, when N � K, each item, on
average, is remembered by K/N slots, so its precision will be
inversely proportional to N. In the VP models, we assume that
mean precision depends on set size in a power law fashion,

J̄�
1

N� . Thus, the power � is a free parameter in the VP models

(e.g., fitted as �1.25 
 0.06 in the VP-F-NT model and
as �1.67 
 0.08 in the VP-P-NT model), whereas it is essen-
tially fixed to �1 in the SA models. To test how crucial this
extra model flexibility is, we computed the model log likeli-
hoods of VP model variants with the power fixed to �1. We

found that all VP models perform worse compared with the
variant with a free power (see Figure 11, left panel). However,
the most successful VP models (VP-F-NT and VP-P-NT) still
outperform all other models by an average of at least 4.6 points.
Moreover, the rejection rate remains low for VP and high for all
other model groups (see Figure 11, second panel). These results
indicate that the continuous, variable nature of precision makes
the VP models successful, not the power law in the relationship
between mean precision and set size.

Variable-precision models with different types of distribu-
tions over precision. Our results suggest that variability in mne-
monic precision is an important factor in the success of the VP
models. So far, we have modeled this variability using a gamma
distribution with a scale parameter that is constant across set sizes.
Because many other choices would have been possible, one may
interpret our use of the gamma distribution as an arbitrary behind
the scenes decision. The proper way to test the (rather general)
concept of variable precision would be to marginalize over all
possible ways to implement this variability. Although a full mar-
ginalization seems impossible, an approximate assessment of the
robustness of the success of the VP concept can be obtained by
examining how well it performs under various specific alternative
distributions over precision. Therefore, we implemented and tested
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VP models with the following alternative distributions over pre-
cision: (a) a gamma distribution with a constant shape parameter
(instead of a constant scale parameter), (b) a Weibull distribution
with a constant shape parameter, (c) a log-normal distribution with
constant variance, and (d) a log-uniform distribution with constant
variance. Although these four variants perform slightly worse than
the original VP model (see Figure 12, first column), they all still
have rejection rates substantially lower than those of the FP, SA,
and EP models (see Figure 12, second to fourth columns). Hence,
the success of VP is robust under changes of the assumed distri-
bution over precision.

Equal and variable-precision models with a constant prob-
ability of remembering an item. Sims et al. (2012) proposed a
model in which each item has a probability p of being remem-
bered, with p fitted separately for each set size. Their model is
most comparable with our EP-P and VP-P models, with the dif-
ference that the number of remembered items follows a binomial
instead of Poisson distribution. To examine how much of a dif-
ference this makes, we fitted EP and VP variants with a binomial
distribution of K, with success probability p fitted separately for
each set size. (Note that the mean of K now depends on set size,
unlike all models we considered so far.) We term these models
EP-B, EP-B-NT, VP-B, and VP-B-NT. We found that the AIC
values of EP-B and EP-B-NT are almost the same as those of EP-P
and EP-P-NT (the differences were �0.10 
 0.61 and 1.72 

0.53, respectively). This means that the binomial variants of EP are
difficult to distinguish from the Poisson variants. The differences
were slightly larger for the VP-P models: The AIC values of VP-B
and VP-B-NT were 5.03 
 0.39 and 5.70 
 0.39 higher than those
of VP-P and VP-P-NT, respectively. This means that the Poisson
versions of VP are preferred over the binomial variants.

Effect of response noise. All models tested in this article
incorporated response noise. One may wonder to what extent our
conclusions depend on this modeling choice. Figure 13A shows
the estimated response noise distributions in the most successful
model (VP-P-NT). The geometric mean of �r in this model was
49.7. We found that by converting this to degrees and approxi-
mating the Von Mises noise distribution by a Gaussian, this
corresponds to a standard deviation of 8.1°. This suggests that
response noise is generally small but not necessarily negligible. To
assess more directly how important the response noise parameter
is, we fitted all 32 models without response noise. We found that
removal of response noise led to a small increase in AIC for most

models (see Figure 13B) but did not have strong effects on factor
rejection rates (see Figure 13C). There is still strong evidence for
variable precision and for the presence of nontarget responses. The
most notable change is that among models without response noise,
-A models fare relatively poorly compared with their performance
when we allow for response noise (see Figure 5B). Hence, our
conclusions do not strongly depend on whether response noise is
included in the models.

Effect of lapse rate. In all tested models, random guesses
could arise only from a limitation in the number of items stored in
working memory. However, it is conceivable that subjects some-
times also produce a guess because of other factors, such as lapses
in attention or blinking during stimulus presentation. We examined
the possible contribution of such factors by adding a constant lapse
rate to all models and computing how much this changed models’
AIC values. We found that adding a constant lapse rate improved
the AIC value for all models in which all items are remembered
(-A) and for those in which a fixed number are remembered (-F)
but made it slightly worse for all models with a variable number of
remembered items (see Figure 14A). This can be understood by
considering that even without a lapse parameter, the -P- and -U-
models can already incorporate some guessing at every set size,
whereas the -A- and -F- models cannot. Apparently, adding a
constant lapse rate creates a redundancy in the -P- and -U- models
but not in the -A- and -F- models. Including a lapse rate does not
strongly affect the factor rejection rates (see Figure 14B), indicat-
ing that our main conclusion does not heavily rely on this param-
eter.

Ensemble Representations in Working Memory?

All models that we tested here assumed that items in working
memory are remembered entirely independently of each other.
However, some authors have suggested working memory may
have a hierarchical organization: in addition to the individual item
values (colors or orientations), subjects may store ensemble sta-
tistics, such as the mean and variance of the entire set of items and
make use of these statistics when recalling an item (Brady &
Alvarez, 2011; Brady & Tenenbaum, 2013; Orhan & Jacobs,
2013). Here, we examine whether the subject data contain evi-
dence of such hierarchical encoding, by examining whether the
mean or variance of a stimulus set influenced a subject’s response.
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to set size is fixed to �1. Left panel: Akaike information criterion (AIC) values of the VP model variants relative
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A strong prediction of hierarchical encoding models is that
subject responses are biased toward the mean of the stimulus set.
To assess whether evidence of such a bias is present in the data that
we considered here, we computed for each trial the relative bias
toward the mean of the stimulus set as follows. First we subtracted
the target value from all stimuli and from the response, r (i.e., we
rotated all items such that the target would always be 0). Next, we

computed the bias as
r

m
·100%, where r is the subject’s response

and m is the circular mean of the stimulus set. Hence, a bias of 0
means that the subject’s response was identical to the target value,
a negative value means that the subject had a bias away from the
mean of the stimulus set, and a positive bias means that the subject
had a response bias toward the mean of the stimulus set (see Figure
15A). Figure 15B shows for each set size the distribution of biases

across all trials of all subjects. All distributions appear to be
centered at and symmetric around 0, which means that there is no
clear evidence for a systematic bias toward or away from the mean
of the stimulus set. Figure 15C shows the mean bias across
subjects. At no set size was the bias significantly different from 0
(Student t test, p 	 .07, for all comparisons). Thus, in this analysis,
we do not find evidence for subjects making use of the mean of the
stimulus set when estimating an individual item.

Similarity between items is another ensemble statistic that sub-
jects may encode, because groups of similar items (i.e., lower
variance) are possibly remembered more efficiently together. If
this is the case, we predict that subjects’ estimates are more
accurate for homogeneous (low-variance) displays compared with
heterogeneous (high-variance) displays. To examine whether there
is any evidence for this in the subject data, we plotted the circular
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Figure 12. Results of VP variants with different distributions of mnemonic precision. Each row shows a
different variant. Left: Akaike information criterion (AIC) values of the VP model variants relative to the original
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variance of the distribution of subjects’ estimation errors as a
function of the circular variance of the stimulus set on a given trial
(see Figure 16). If this particular type of ensemble coding is
occurring, one could expect an increasing trend in these curves. At
first glance, there indeed seems to be a strong effect of stimulus
variance at higher set sizes (see Figure 16A). However, these
trends are accurately reproduced by the VP-P-NT model (see
Figure 16B), in which the variance of the stimulus set does not
play a role in encoding or reporting items. Additional analyses
revealed that these trends are due to circular variance being sys-
tematically underestimated when the number of trials is low. This
bias is strongest in the low-variance bins of the higher set sizes
(N � 4, 6, 8), because low circular variance values of the stimulus
set are less likely to occur at higher set sizes, with the consequence
that the numbers of data trials are relatively low for those bins.

Taken together, these results suggest that subjects’ estimation
errors are independent of both the mean and the variance of the
stimulus set. Hence, these data contain no clear evidence for
hierarchical encoding in working memory.

General Discussion

In this study, we created a three-factor space of models of
working memory limitations based on previously proposed mod-
els. This allowed us to identify which levels in each factor make a
model a good description of human data and to reject a large
number of specific models, including all six previously proposed
ones. Our approach limits the space of plausible models and could
serve as a guide for future studies. Of course, future studies might
also propose factors or levels that we did not include in our
analysis; if they do, they should compare the new models against
the ones we found to be best here.

Regarding the first factor we examined (the nature of mnemonic
precision), we found that mnemonic precision is continuous and
variable across items and trials (Van den Berg et al., 2012) instead
of being quantized (Zhang & Luck, 2008) or continuous and equal
across items and trials (Palmer, 1990; see Figure 5A). This
strengthens the conclusion from earlier work (Van den Berg et al.,
2012), because here we considered a much larger set of models.
Moreover, the superiority of variable-precision models is robust
under changes in model assumptions (see Figures 10, 11, and 12),
for example, when quantized-precision models are allowed the
flexibility of variability in allocation of quanta or in the precision
per quantum (see Figure 10). In the VP- models, we found steep
decreases of mean precision with increasing set size; the power
laws we used to describe these dependencies had powers, on
average, more negative than �1.

Although our results strongly support the notion of variability in
mnemonic precision, they do not address the origins of this vari-
ability. Many sources are conceivable: fluctuations in attention
over trials (Cohen & Maunsell, 2010; Nienborg & Cumming,
2009), fluctuations in attention over space (Lara & Wallis, 2012),
differences in precision across stimulus values (Bae, Wilson, &
Flombaum, 2013; Girshick, Landy, & Simoncelli, 2011), and
variability in memory decay rates (Fougnie, Suchow, & Alvarez,
2012b). It is likely that multiple factors contribute, and distinguish-
ing them will be challenging. In fact, not all of these possible
factors determining mnemonic precision can be called resource,
and, from this perspective, it might be wise to draw a distinction
between resource and precision.

Variability in precision might be directly measurable in phys-
iological recordings. For example, if precision were to map to
the gain of a neural population encoding the stimulus (Ma,
Beck, Latham, & Pouget, 2006; Van den Berg et al., 2012), we
would expect variability in gain across trials. This is consistent
with observations of doubly stochastic spike counts in macaque
cortex (A. K. Churchland et al., 2011; M. M. Churchland et al.,
2010; Goris, Movshon, & Simoncelli, 2012). Alternatively,
variability in precision might even arise at constant gain simply
due to the variability in the total spike count or firing rate
(Bays, 2013), which is observed during both perception (Tol-
hurst, Movshon, & Dean, 1983) and working memory (Shafi et
al., 2007). Functional magnetic resonance data might prove
valuable in decoding the contents of multiple-item working
memory; it was found recently that intersubject differences in
the information content of signals in visual cortex are correlated
with the precision of individuals’ recall (Ester, Anderson, Ser-
ences, & Awh, 2013).
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Regarding the second factor we examined (the number of re-
membered items), the evidence is somewhat equivocal: The model
family in which all items are remembered performs worse than the
model families models with a Poisson-distributed or fixed number
of remembered items (see Figure 5B). However, the differences
are too small to make very strong statements. Although the cur-
rently available delayed-estimation data thus do not allow us to

completely resolve the debate about the number of remembered
items, our results do suggest that if not all items are remembered,
previous literature has severely underestimated the number of
remembered items. For example, in the VP-P-NT model, the
median value of Kmean was 6.4, much higher than the median K of
3 found in basic models with a fixed number of remembered items
(SA-F and EP-F, as well as their -NT variants). Similarly, in the
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best model with a fixed number of remembered items, the VP-
F-NT model, the median K was 6. The difference arises because
the SA-F and EP-F models do not take variability in precision and
nontarget reports into account, with the consequence that low-
precision and nontarget responses can only be explained as non-
remembered items.

The mixed conclusion regarding the distribution of the number
of remembered items could also reflect individual differences. For
example, some subjects may try harder (and therefore succeed
more often) to remember all items on all trials than other subjects;
the first group is expected to be fitted best by -A models, whereas
the other group may be fitted better by -F and -P models. We
emphasize that in the -F models, we do not interpret the number of
remembered items (when it was smaller than the largest set size) as
a limit on the number of remembered items. For example, subjects
might sometimes voluntarily remember only a subset of items due
to a lack of motivation or due to a desire to achieve a minimum
level of precision. In other words, the number of items that are
remembered is not necessarily equal to the number of items that
can be remembered. In the -P- models, it is obvious that there is no
limit on the number of remembered items, because K is drawn
from a Poisson distribution. In these models, however, the psy-
chological processes underlying this Poisson distribution are not
specified. Thus, the models, in their current forms, do not allow us
to determine why some subjects do not seem to remember all items
all the time.

Overall, the narrative suggested by our results is that at least at
set sizes up to 8, some subjects might occasionally have no
memory representation at all of some items, but this is far rarer
than previously thought. Instead, the main driver of the deteriora-
tion of working memory performance with set size is the decrease
in memory quality as set size increases, coupled with variability in
this quality.

Regarding the third factor we examined, our results support the
existence of nontarget reports in working memory (see Figure 5C),
which had been proposed before (Bays et al., 2009) but never been
subjected to model comparison. Our findings suggest that the
nontarget report rates are relatively low. The origin of the nontar-
get reports is unclear. If they reflect spatial binding errors, they

could be due to positional uncertainty (Hess & Hayes, 1994) or
visual crowding (Levi, 2008). Apparent nontarget reports could
also arise from a hierarchical representation of information in
working memory, which could cause the memory of an individual
item to be influenced by other items. Previous studies have found
evidence for hierarchical encoding (Brady & Alvarez, 2011; Brady
& Tenenbaum, 2013; Orhan & Jacobs, 2013), but the 10 data sets
analyzed here do not support this notion (see Figures 15 and 16).

The previous literature on working memory limitations has
made conflicting claims. Here, we have shown that once a more
complete model space is explored, model comparison results re-
ported in previous articles hold up, but their claims do not. Spe-
cifically, Zhang and Luck (2008) found that SA-F fitted better than
EP-A and EP-F, Anderson and colleagues (Anderson & Awh,
2012; Anderson et al., 2011) found that SA-F fitted better than
EP-A, and Van den Berg et al. (2012) found that VP-A fitted better
than SA-F, EP-A, and FP-F. Although the authors of these articles
drew conflicting conclusions regarding broad model classes, their
rankings of specific models are consistent with each other and also
with the ranking of the full set of models in the present study.

Our factorial model comparison was limited to a single depen-
dent measure of working memory performance, namely, the esti-
mation error in delayed estimation. It would be worthwhile to
apply the same method to other measures, both to verify the
consistency of our conclusions across tasks and to further distin-
guish models and model families. Accuracy as a function of both
set size and change magnitude in change detection (Keshvari et al.,
2013; Lara & Wallis, 2012) and change localization (Buschman,
Siegel, Roy, & Miller, 2011; Van den Berg et al., 2012) seem to be
suitable candidate measures for factorial model comparison. In-
cluding reaction time (Donkin, Nosofsky, Gold, & Shiffrin, 2013)
or confidence data (Rademaker et al., 2012) in factorial model
comparison could further extend the current work.

Factorial model comparison, taken to the extreme, could lead to
excessive model proliferation, frequent indistinguishability of
models, and delayed graduation of doctoral students. It is impor-
tant to keep in mind, however, that the factorial method only
highlights and does not create the problem that some plausible
models are hard to distinguish. In fact, this problem is shared by

Subjects VP-P-NT

0 0.2 0.4 0.6 0.8 1
Circular variance of stimulus set

N=2
N=3
N=4
N=6
N=8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

C
irc

ul
ar

 v
ar

ia
nc

e 
of

 
er

ro
r d

is
tri

bu
tio

n

A B

Figure 16. A. Effect of stimulus variance on estimation error in the subject data. For high set sizes, the variance
of the error distribution increases with the variance of the stimulus distribution. B. This effect is reproduced by
the VP-P-NT model and can be explained as the result of circular variance being biased when only a few data
points are available. The model results were obtained by generating synthetic data for each subject, using the
subject’s maximum-likelihood parameter estimates and simulating the same number of trials and set sizes as in
the subject data. See Table 2 for the model abbreviation key. Error bars indicate 1 standard error of the mean.
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virtually all behavioral studies of perceptual and cognitive pro-
cesses. It is inherently difficult to decipher the contents of a black
box with many moving parts using just a few thousand observed
input–output pairs. Studies that compare only a few models cannot
possibly be more conclusive than those that perform a factorial
comparison—the former are simply ignoring vast swaths of model
space. The modeling of the moving parts can be constrained by
general plausibility considerations but, ultimately, plausibility is
subjective. Further constraints on models of working memory
limitations might have to be derived from physiological experi-
ments, especially neural population recordings coupled with good
models of neural coding. In the meantime, factorially comparing
models using likelihood-based methods is the fairest and most
objective method for drawing conclusions from psychophysical
data. If that forces researchers to reduce the level of confidence
with which they declare particular models to be good representa-
tions of reality, we would consider that a desirable outcome.
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Appendix

Further Model Fitting and Model Comparison Results

Parameter Estimates

For a discussion of how the values in Table A1 were calculated,
see the Model Fitting section of the main text.

Model Recovery Analysis

We performed a model recovery analysis to test the validity of
the Akaike information criterion (AIC) and the Bayesian informa-
tion criterion (BIC) as measures to distinguish the 32 models
considered in this article. For each model, we generated 16 syn-
thetic data sets (fake subjects) with set sizes 1, 2, 3, 4, 6, and 8, and
150 trials per set size; these numbers are representative of subject
data sets (see Table 1 in the main text). To ensure that the statistics
of the synthetic data sets are representative of those of subject data,
we generated the synthetic data using maximum-likelihood param-
eter estimates from randomly picked subjects. At the level of the
512 individual data sets, AIC selected the correct model 247 times
(48.2%) and BIC selected it 230 times (44.9%). There are two
possible causes of incorrect model selections: (a) a bias in the
model selection method (e.g., favoring simple models too much)
and (b) variability in the maximum-likelihood estimates due to the
relatively small size of individual data sets. The former explana-
tion would be a reason to reject a model comparison method,
whereas the latter can be overcome by averaging across subjects.
When averaging across fake subjects, we found that BIC selected
a wrong model in nine out of 32 cases, mostly because it favored
a simpler model over the one that generated a data set (e.g., VP-A
was selected on the VP-F, VP-F-NT, and VP-P data sets; see Table
2 for the model abbreviation key). Hence, BIC seems to be biased
and is therefore unsuitable to distinguish the set of models con-
sidered in this study. Model recovery based on subject-averaged
AIC values was substantially better: The correct model was se-
lected in 31 out of 32 cases (see Figure A1). The only mistake
made by the AIC method was that it wrongly selected SA-F-NT as
the most likely model for EP-F-NT data (the difference in average
AIC was 0.85 in favor of SA-F-NT). These models are quite
similar to each other conceptually, and apparently the SA-F-NT
model is able to account well for EP-F-NT data, with one param-
eter less. This means that the SA-F-NT and EP-F-NT may, in
practice, be hard to distinguish from each other. However, because

both models performed poorly compared with many of the other
models, this is not a problem in the present study.

Robustness of Model Comparison Results

To verify the robustness of the model comparison results based
on AIC values, we also performed a model comparison based on
marginal model log likelihoods (Bayes factors; Kass & Raftery,
1995), approximated through Riemann sums. This method was
also successful in model recovery based on synthetic data, indi-
cating that it is suitable for our set of models. Moreover, the model
order based on Bayes factors was highly consistent with the order
based on AIC values: The Spearman rank correlation coefficient
between rankings from the two methods was 0.931 
 0.009 (mean
and standard error across subjects).

(Appendix continues)
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Figure A1. Model recovery analysis. We tested how well synthetic data
sets generated from each model (columns) were fitted by each model
(rows). The color in a cell indicates a model’s Akaike information criterion
(AIC) relative to the winning model. Dark red on the diagonal means that
the model used to generate the data was found to be most likely. See Table
2 for the model abbreviation key.
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Table A1
Maximum Likelihood Estimates per Model

Model Parameter M 
 SEM Mdn Model Parameter M 
 SEM Mdn

FP-A log �r 0.616 
 0.027 0.61 FP-A-NT log �r 1.48 
 0.04 1.45
� (8.12 
 0.24)·10–2 0.08

FP-F log �r 1.95 
 0.04 1.94 FP-F-NT log �r 1.98 
 0.04 1.94
K 2.48 
 0.07 2 K 2.93 
 0.09 3

� (2.75 
 0.29) ·10–2 0.02
FP-P log �r 2.17 
 0.04 2.2 FP-P-NT log �r 2.17 
 0.04 2.19

K 3.31 
 0.08 3.15 K 3.93 
 0.10 3.72
� (4.08 
 0.28) ·10–2 0.04

FP-U log �r 2.23 
 0.04 2.24 FP-U-NT log �r 2.20 
 0.04 2.19
K 8.19 
 0.66 6.5 K 15.9 
 1.3 10

� (4.80 
 0.28) ·10–2 0.05
SA-A log �r 0.616 
 0.027 0.61 SA-A-NT log �r 1.48 
 0.04 1.45

� (8.12 
 0.24) ·10–2 0.08
SA-F log J1 2.78 
 0.21 1.79 SA-F-NT log J1 2.60 
 0.19 1.85

log �r 7.42 
 0.24 9.21 log �r 6.35 
 0.25 8.45
K 2.71 
 0.08 3 K 3.40 
 0.11 3

� (3.01 
 0.27) ·10–2 0.02
SA-P log J1 1.94 
 0.10 1.78 SA-P-NT log J1 1.95 
 0.11 1.79

log �r 6.73 
 0.21 8.19 log �r 5.91 
 0.22 6.56
Kmean 3.64 
 0.10 3.48 Kmean 4.41 
 0.11 4.16

� (3.96 
 0.28) ·10–2 0.04
SA-U log J1 1.64 
 0.10 1.65 SA-U-NT log J1 1.00 
 0.11 0.95

log �r 6.89 
 0.21 9.09 log �r 5.82 
 0.20 5.15
Kmax 11.7 
 1.2 8 Kmax 30.6 
 2.2 17.5

� (4.91 
 0.28) ·10–2 0.05
EP-A log J1 3.73 
 0.14 3.28 EP-A-NT log J1 3.78 
 0.17 2.9

� �2.60 
 0.09 �2.38 � �2.07 
 0.11 �1.65
log �r 6.16 
 0.25 8.11 log �r 6.51 
 0.23 8.06

� (5.13 
 0.27) ·10–2 0.05
EP-F log J1 2.84 
 0.13 2.48 EP-F-NT log J1 3.26 
 0.16 2.64

� �1.10 
 0.10 �1.01 � �1.16 
 0.10 �0.96
log �r 8.03 
 0.16 8.9 log �r 6.98 
 0.19 7.87
K 2.76 
 0.08 3 K 3.41 
 0.12 3

� (2.82 
 0.27) ·10–2 0.02
EP-P log J1 5.74 
 0.19 6.04 EP-P-NT log J1 5.15 
 0.19 4.81

� �3.24 
 0.17 �3.28 � �2.52 
 0.16 �2.14
log �r 3.67 
 0.14 3.15 log �r 4.02 
 0.16 3.45
Kmean 4.13 
 0.26 3.78 Kmean 5.9 
 1.3 4.2

� (2.86 
 0.28) ·10–2 0.02
EP-U log J1 6.25 
 0.17 6.59 EP-U-NT log J1 5.30 
 0.18 4.96

� �3.56 
 0.14 �3.86 � �2.67 
 0.14 �2.44
log �r 3.47 
 0.14 3.02 log �r 3.88 
 0.15 3.29
Kmax 16.2 
 0.9 13 Kmax 26.0 
 1.4 19.5

� (3.62 
 0.29) ·10–2 0.03
VP-A log J̄1 5.30 
 0.12 5.39 VP-A-NT log J̄1 4.99 
 0.12 5.09

� �1.54 
 0.04 �1.59 � �1.41 
 0.04 �1.47
log  4.54 
 0.13 4.4 log  4.12 
 0.13 3.95
log �r 3.40 
 0.12 3.1 log �r 3.66 
 0.13 3.28

� (2.40 
 0.27) ·10–2 0.01
VP-F log J̄1 4.74 
 0.12 4.8 VP-F-NT log J̄1 4.36 
 0.11 4.5

� �1.42 
 0.06 �1.38 � �1.25 
 0.06 �1.15
log  3.90 
 0.13 3.81 log  3.40 
 0.12 3.2
log �r 3.99 
 0.15 3.47 log �r 4.17 
 0.15 3.66
K 5.66 
 0.16 5.5 K 5.68 
 0.17 6

� (2.40 
 0.27) ·10–2 0.01
VP-P log J̄1 5.06 
 0.13 5.2 VP-P-NT log J̄1 4.72 
 0.13 4.71

� �1.88 
 0.08 �1.89 � �1.67 
 0.08 �1.64
log  3.38 
 0.14 3.27 log  2.93 
 0.15 2.92
log �r 3.81 
 0.15 3.3 log �r 3.91 
 0.14 3.44
Kmean 76 
 49 5.8 Kmean 110 
 59 6.4

� (2.35 
 0.27) ·10–2 0.01

(Appendices continue)
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Table A1 (continued)

Model Parameter M 
 SEM Mdn Model Parameter M 
 SEM Mdn

VP-U log J̄1 5.46 
 0.12 5.52 VP-U-NT log J̄1 5.12 
 0.13 5.18
� �1.91 
 0.06 �1.94 � �1.74 
 0.06 �1.81

log  3.84 
 0.12 3.7 log  3.37 
 0.14 3.28
log �r 3.34 
 0.13 3.03 log �r 3.54 
 0.13 3.19

Kmax 42.2 
 1.0 43.5 Kmax 45.0 
 1.1 46
� (2.27 
 0.28) ·10–2 0.01

Note. All logarithms have base e. SA-A and FP-A models are identical. See Table 2 for the model abbreviation key. Disclaimer: The meaningfulness of
parameter estimates depends on the goodness of fit of the model (for which, see, for instance, Figure 3C).
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